
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

C
en

ter fo
r E

n
v

iro
n

m
en

ta
lly

 S
u

sta
in

a
b

le T
ra

n
sp

o
rta

tio
n

  
in

 C
o
ld

 C
lim

a
tes 

 
Mapping the Wolverine Way: 

Identifying Conservation Corridors and Transboundary Linkages 
in the Canadian Crown of the Continent Region  

INE/CESTiCC 19.13 

 
Anthony P. Clevenger, Ph.D. 
Western Transportation Institute 
Montana State University 

 

Date: September 2019 

Center for Environmentally Sustainable 
Transportation in Cold Climates 
University of Alaska Fairbanks 

P.O. Box 755900 
Fairbanks, AK 99775 

U.S. Department of Transportation 
1200 New Jersey Avenue, SE 
Washington, DC 20590  

Prepared by: 



 

 

 

 

 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Report No.   
 

2. Government Accession No.  3. Recipient's Catalog No. 

 
4. Title and Subtitle   

Mapping the Wolverine Way: Identifying conservation corridors 

and transboundary linkages in the Canadian Crown of the Continent 

region 
 

 

5. Report Date September 2019  
 
6. Performing Organization Code  

 
7. Author(s)  

Anthony P. Clevenger, Ph.D. 

 
8. Performing Organization Report No. 
 

 
9. Performing Organization Name and Address 

Western Transportation Institute and 

Montana State University 

PO Box 174250 

Bozeman, MT 59717 

 
10. Work Unit No. 
 
11. Contract or Grant No.   
 

 
12. Sponsoring Agency Name and Address 

Center for Environmentally Sustainable Transportation in Cold 

Climates. University of Alaska, Fairbanks. Fairbanks, AK. 

 
13. Type of Report and Period Covered 

 
 

14. Sponsoring Agency Code 5401 
 

15. Supplementary Notes Research performed in cooperation with the Montana Department of Transportation and the US Department of 

Transportation, Federal Highway Administration. 

ABSTRACT: 

The Canadian Crown of the Continent (CCoC) is one of three zones where wolverines can move between Canada and the US, providing 

the last links for recruitment and ultimately gene flow to the highly fragmented population in the US Rocky Mountains. However, a 

combination of rapidly expanding logging, energy development and motorized recreation, along with a growing road network, threatens 

to fragment and diminish connections in this critical transboundary linkage between the US and Canada. This report summarizes a 

project to complete a 3-year sampling effort in the CCoC, which in turn completed a larger 6-year effort over a vast area of the central 

and southern Canadian Rockies. In 2016, the research team surveyed the last unsampled portion of the Alberta Rockies (south of 

Kananaskis Country to Highway 3) in addition to a substantial portion of the East Kootenay region of the British Columbia Rockies 

(BC; >9000 km2). This follow-up effort allowed the team to complete an entire ecoregion-wide wolverine survey in the Canadian 

Rockies ecoregion, from the US-Canadian border north to Banff and Yoho National Parks. From this data, researchers created density 

estimates and occupancy models of wolverine distribution and its multiple landscape stressors across an extensive and complex region 

of the Great Northern Landscape. The report summarizes research findings and makes recommendations regarding management 

strategies. 

 

 

 
17. Key Words Wolverines, wildlife corridors, habitat connectivity, 

genetic diversity, population density 

 
18. Distribution Statement 

Unrestricted.  

 
19. Security Classif. (of this report) 
Unclassified 

 
20. Security Classif. (of this page) 

Unclassified 

 
21. No. of Pages 

105 

 
22. Price 

 

 



  

 

Mapping the Wolverine Way: 

Identifying conservation corridors and transboundary 

linkages in the Canadian Crown of the Continent 

region 

 
Authors:  

Anthony P Clevenger, PhD 

Road Ecology Program 

Western Transportation Institute 

Montana State University, Bozeman 

 

 

Date:  

September 2019 

 

 

Prepared by: 

Center for Environmentally Sustainable Transportation in Cold Climates 

University of Alaska, Fairbanks 

PO Box 755900 

Fairbanks, AK 99775 

 

U.S. Department of Transportation 

1200 New Jersey Avenue, SE 

Washington, DC 20590 

 

 

 

Report No.: INE/AUTC 19.13 

 



i 

 

Disclaimer 

This document is disseminated under the sponsorship of the U. S. Department of 

Transportation in the interest of information exchange. The U.S. Government assumes no 

liability for the use of the information contained in this document. The U.S. Government does 

not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this 

report only because they are considered essential to the objective of the document. 

Opinions and conclusions expressed or implied in the report are those of the author(s). 

They are not necessarily those of the funding agencies.  

 



ii 

 

METRIC (SI*) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS 

Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply To Find Symbol 
By 

 
   LENGTH   

 
   LENGTH   

in inches 25.4 mm 
ft feet 0.3048 m 

yd yards 0.914 m 

mi Miles (statute) 1.61 km 
 
 

  AREA   

 
in2 square inches 645.2 millimeters squared cm2 

ft2 square feet 0.0929 meters squared m2
 

yd2 square yards 0.836 meters squared m2
 

mi2 square miles 2.59 kilometers squared km2
 

ac acres 0.4046 hectares ha 

 
MASS 

      (weight)   

 
oz Ounces (avdp) 28.35 grams g 
lb Pounds (avdp) 0.454 kilograms kg 
T Short tons (2000 lb) 0.907 megagrams mg 

 
    VOLUME   

 
fl oz fluid ounces (US) 29.57 milliliters mL 
gal Gallons (liq) 3.785 liters liters 

ft3 cubic feet 0.0283 meters cubed m3
 

yd3 cubic yards 0.765 meters cubed m3
 

 
Note: Volumes greater than 1000 L shall be shown in m3

 

 
TEMPERATURE 

  (exact)   

 
oF Fahrenheit 5/9 (oF-32) Celsius

 oC temperature 

 temperature 
 

ILLUMINATION 

 
fc Foot-candles 10.76 lux lx 

fl foot-lamberts 3.426 candela/m2 cd/cm2
 

 
 

FORCE and 
PRESSURE or 

STRESS 

 
lbf pound-force 4.45 newtons N 

psi pound-force per 6.89 kilopascals kPa 

square inch 
 
 

These factors conform to the requirement of FHWA Order 5190.1A *SI is the 
symbol for the International System of Measurements 

mm         millimeters                             0.039          inches                            in 
m            meters                                      3.28           feet                                ft 

m            meters                                      1.09           yards                             yd 

km          kilometers                               0.621          Miles (statute)               mi 
 
 

  AREA   

 
mm2             millimeters squared              0.0016         square inches               in2 m2                  

meters squared                   10.764         square feet                    ft2 km2              

kilometers squared                 0.39           square miles                 mi2 ha           

hectares (10,000 m2)              2.471          acres                              ac 
 
 

MASS 

      (weight)   

 
g             grams                                     0.0353         Ounces (avdp)              oz 

kg           kilograms                           2.205          Pounds (avdp)              lb mg          
megagrams (1000 kg)            1.103          short tons                      T 

 
    VOLUME   

 
mL          milliliters                                0.034          fluid ounces (US)         fl oz 

liters       liters                                       0.264          Gallons (liq)                 gal 

m3                  meters cubed                         35.315         cubic feet                      ft3
 

m3                  meters cubed                          1.308          cubic yards                   yd3
 

 

 
 

TEMPERATURE 

  (exact)   

 
oC           Celsius temperature             9/5 oC+32            Fahrenheit              oF 

temperature 

ILLUMINATION 

lx            lux                                          0.0929               foot-candles           fc 

cd/cm     candela/m2                                                0.2919               foot-lamberts         fl 
2 

 
FORCE and 

PRESSURE or 
STRESS 

 
N            newtons                                   0.225                pound-force           lbf 

kPa kilopascals 0.145 pound-force per psi 
square inch 

 
32 98.6 212oF 

-40oF 0 40 80 120 160 200 

-40oC -20 20 40 60 80 

0 37 
100oC 



iv 

 

Acknowledgments  

This project was generously supported by Parks Canada, the Western Transportation 

Institute–Montana State University (WTI), the Woodcock Foundation, and the Wilburforce 

Foundation. Support from Parks Canada came from the Highway Service Centre and the Banff 

and Lake Louise-Yoho-Kootenay Field Units. Partial funding came from the U.S. Department of 

Transportation’s Office of the Assistant Secretary for Research and Technology (OST-R) 

funding to WTI and a National Sciences and Engineering Research Council (NSERC) Visiting 

Fellowship grant to M.A. Sawaya. Other support provided by the US Dept. of Transportation and 

Center for Environmentally Sustainable Transportation in Cold Climates, John and Barbara 

Poole Family Funds at Edmonton Community Foundation, Calgary Foundation, Alberta 

Conservation Association, Mountain Equipment Cooperative, McLean Foundation, Patagonia, 

Cameron Plewes, Alberta Sport Parks Recreation and Wildlife Foundation, Greygates 

Foundation, TD Friends of the Environment Foundation, Shell Environment Foundation, Small 

Change Fund, National Geographic Society, Disney Wildlife Conservation Fund, Bow Valley 

Naturalists, and Yellowstone to Yukon Conservation Initiative. 

Additional support was provided for specific components of this research effort.  For the 

wolverine density study, funding was provided by the Columbia Basin Trust, the Fish and 

Wildlife Compensation Program, the BC Ministry of Forests, Lands and Natural Resource 

Operations and Rural Development (MFLNRORD), Parks Canada, Vanier Canada Graduate 

Scholarship, the Western Transportation Institute–Montana State University, Woodcock 

Foundation, Wilburforce Foundation, Liz Claiborne Art Ortenberg Foundation, Volgenau 

Foundation, Cross Foundation, the US Dept. of Transportation and Center for Environmentally 

Sustainable Transportation in Cold Climates, US Fish and Wildlife Service Great Northern 

Landscape Conservation Cooperative, Alberta Conservation Association, Mountain Equipment 



v 

 

Cooperative, McLean Foundation, Patagonia, Cameron Plewes, Alberta Sport Parks Recreation 

and Wildlife Foundation, National Geographic Society, Disney Wildlife Conservation Fund, 

Norcross Foundation, Bow Valley Naturalists, Yellowstone to Yukon Conservation Initiative, 

Lake O’Hara Lodge, Alpine Club of Canada and The Wolverine Foundation. MFLNRORD, BC 

Provincial Parks, Idaho Fish and Game and Idaho Panhandle National Forest, Teck Coal, MD of 

Ranchlands, Alberta Environment and Parks - Fish and Wildlife and Wildsight also provided 

logistical support and assistance. We thank the regional trapping community for wolverine 

carcasses, bait, site location advice and assisting in field operations. Thanks to K. McGuinness 

for GIS work. Thanks to field technicians: B. Philips, T. Malish, B. Bertch, R. Bunyan, N. Heim, 

A. Banting, J. Zettel, T. Abraham, J. Robbins, C. Lehman, S. Forrest, D. Fear, S. Himmer, A. 

Page, A. Bourelle, D. Lynch, C. Hiebert,  J. McCullough and many volunteers. J. Jorgenson, G. 

Hale and M. Didkowski helped with logistics in Alberta, while D. Gorrie, B. Hunt, G. Kubian, T. 

Kinley, A. Dibb and B. Fyten helped in the national parks. We thank Jeff Parker of Kootenay 

Valley Helicopters and Dave Hawrys from Ascent Helicopter for transportation and field 

assistance. Bill Hanlon (Hornaday Wilderness Society) helped with BC funding. Thanks also to 

staff at WGI for genetic analysis. Our thanks to CanAus Coal Ltd., Jameson Resources Ltd. and 

Parks Canada for sharing their wolverine sampling data. We thank J. Krebs and Eric Lofroth for 

reviewing the manuscript. 

The wolverine gene flow study was generously supported by Parks Canada, the Western 

Transportation Institute–Montana State University (WTI), the Woodcock Foundation, and the 

Wilburforce Foundation. Support from Parks Canada came from the Highway Service Centre 

and the Banff and Lake Louise-Yoho-Kootenay Field Units. Partial funding came from the U.S. 

Department of Transportation’s Office of the Assistant Secretary for Research and Technology 



vi 

 

(OST-R) funding to WTI and a National Sciences and Engineering Research Council (NSERC) 

Visiting Fellowship grant to M.A. Sawaya. Other support was provided by the US Dept. of 

Transportation and Center for Environmentally Sustainable Transportation in Cold Climates, 

John and Barbara Poole Family Funds at Edmonton Community Foundation, Calgary 

Foundation, Alberta Conservation Association, Mountain Equipment Cooperative, McLean 

Foundation, Patagonia, Cameron Plewes, Alberta Sport Parks Recreation and Wildlife 

Foundation, Greygates Foundation, TD Friends of the Environment Foundation, Shell 

Environment Foundation, Small Change Fund, National Geographic Society, Disney Wildlife 

Conservation Fund, Bow Valley Naturalists, Yellowstone to Yukon Conservation Initiative, 

Private Donation (1), Lake O’Hara Lodge and Alpine Club of Canada. Gilles Seutin was 

instrumental in securing Parks Canada funding for the NSERC visiting fellowship. We thank 

Ben Dorsey and Nikki Heim for their important contributions and many hours in the field and 

office. Bill Hunt, Kris McLeary, Rick Kubian, Trevor Kinley, Alan Dibb, Blair Fyten, Cliff 

White, Tom Hurd, Jesse Whittington, Anne Forshner, Dave Gummer, Steve Michel, Tao Gui, 

and Ally Buckingham all helped facilitate many diverse aspects of our project and we are 

grateful for their time and generous support. Rob Ament guided us smoothly through funding 

waters and many transboundary obstacles, including fundraising and budgets. Lastly, we want to 

recognize all the time and hard work of our many volunteers. 

 

  



vii 

 

Table of Contents 

Disclaimer ........................................................................................................................................ i 

Acknowledgments.......................................................................................................................... iv 

List of Figures .............................................................................................................................. viii 

List of Tables .................................................................................................................................. x 

Executive Summary ........................................................................................................................ 1 

CHAPTER 1.0 Introduction............................................................................................................ 4 

CHAPTER 2.0 Conduct survey of wolverine occurrence .............................................................. 6 

2.1 Methods 6 

2.2 Results 9 

CHAPTER 3.0 Develop occupancy models of wolverine distribution ........................................ 14 

3.1 Occupancy Estimation Methods (camera-based) 14 

3.2 Results 16 

3.3 Discussion 26 

CHAPTER 4.0 Estimate wolverine density in Canadian Rocky and Columbia Mountains ........ 30 

4.1 Introduction 30 

4.2 Study Area 35 

4.3 Methods 37 

4.4 Results 46 

4.5 Discussion 55 

4.6 Management Implications 64 

CHAPTER 5.0 Assess wolverine gene flow and fine-scale genetic structure .............................. 66 

5.1 Introduction 66 

5.2 Methods 68 

5.3 Results 71 

5.4 Discussion and Management Implications 77 

CHAPTER 6.0 References............................................................................................................ 81 

 

  



viii 

 

List of Figures 

Figure 1: Three study area grids (12 x 12 km) and location of 162 sampling sites for 

wolverine occurrence in the Canadian Crown of the Continent, 2014-2016. ..................................8 

Figure 2: Location of 70 sampling sites and frequency of wolverine detections in the Elk 

and Flathead Valley study area, Southern Canadian Rockies, 2016. .............................................10 

Figure 3: Location of 162 sampling sites and frequency of wolverine detections in the 

Canadian Crown of the Continent, 2014-2016. .............................................................................12 

Figure 4. Wolverine winter sampling areas showing trap locations and secr mask 

boundaries for each area in matching colors. Mask boundaries were created by assuming 

large lakes were hard population boundaries and, where boundaries did not exist, the mask 

was extended approximately 40 km beyond the outer sample sites. The year of sampling is 

given with the study area name and is the year during late winter. ...............................................36 

Figure 5. The relationship between spring snow cover, road density and wolverine density 

based on our best fit model (model 2 in Table 9). We built our spring snow map using 17 

years of snow cover data following methods outlined in Copeland et al (2010). The upper 

figure is for the combined sex model and the lower figure is for separate sex models. ................51 

Figure 6. Wolverine density in southeast BC and southwest Alberta estimated from spatial 

capture-recapture analysis of genetically identified wolverine sampled during winter 2011-

2016. There was no trapping in national parks but trapping was permitted in some 

provincial parks. .............................................................................................................................53 

Figure 7. The harvest rate of wolverine based on population estimates extrapolated from 

spatial capture-recapture analysis of genetically identified wolverine sampled during 

winter 2011-2016 in southeast BC and southwest Alberta, Canada. Horizontal error bars 

are 95% confidence intervals of population estimates. Vertical error bars are our best guess 

of the likely error in the recording of wolverine trapping kill. Pink shading denotes harvest 

above recommended levels, red shading denotes harvest rates that are likely not 

sustainable. .....................................................................................................................................54 

Figure 8. Wolverine hair trap success in parks complex between 2011 and 2013; number 

of unique wolverines detected at each sampling site in parks complex between 2011 and 

2013.  Locations of 229 wolverine detections in parks complex between 2011 and 2013. ...........70 

Figure 9. Individual detection centers of 64 wolverines (color-coded by haplotype) detected 

with noninvasive genetic sampling to examine the effect of the Trans-Canada Highway on 

fine-scale genetic differentiation in the parks complex between 2011 and 2013. .........................74 

Figure 10. Individual detection centers of A) 25 female and B) 39 male wolverines color-

coded by their assignment to one of three population clusters identified in program 

STRUCTURE to examine the effect of the Trans-Canada Highway on genetic 

differentiation in the parks complex between 2011 and 2013. Individuals with q-value<0.7, 

was not assigned to population cluster for this analysis. ...............................................................75 

Figure 11. Graphical plots showing Factorial Correspondence Analysis [A) 25 female and 

B) 39 male], Principle Coordinates Analysis [C) 25 female and D) 39 male] and 

Assignment Test [E) 25 female and F) 39 male] wolverines detected to the north (red) or 



ix 

 

south (green) of the Trans-Canada Highway in the parks complex between 2011 and 2013.

........................................................................................................................................................76 

 

  



x 

 

List of Tables 

Table 1. Selection of occupancy models for wolverines detected by cameras in the 

combined Alberta study area, combined 2014 and 2015. Detectability (p) could be constant 

(.), vary independently among SURVEYs, or as a TREND among surveys. Occupancy (ψ) 

could be constant (.), vary north-south (UTMN), east-west (UTME), or between YEARs. .........19 

Table 2. Selection of occupancy models for wolverines detected by cameras in the 

combined BC study area, 2015/2016. Detectability (p) could be constant (.), vary 

independently among SURVEYs, or as a TREND among surveys. Occupancy (ψ) could 

be constant (.), vary north-south (UTMN), east-west (UTME), or between YEARs. ...................21 

Table 3. Selection of occupancy models for wolverines detected by cameras in the 2016 

BC study area. Detectability (p) could be constant (.), vary independently among 

SURVEYs, or as a TREND among surveys. Occupancy (ψ) could be constant (.), vary 

north-south (U UTMN), or vary east-west (UTME). ....................................................................22 

Table 4. Selection of occupancy models for wolverines detected by cameras in the 

combined Alberta and BC study areas (2014 - 2016). Detectability (p) could be constant 

(.), vary independently among SURVEYs, vary as a TREND among surveys, vary across 

YEARs or between PROVinces. . Occupancy (ψ) could be constant (.), vary north-south 

(UTMN), vary east-west (UTME), across YEARs, or between PROVinces. ...............................24 

Table 5. Evidence ratios (ER) of the covariates used in models of combined AB - BC 

occupancy analysis.........................................................................................................................25 

Table 6. Wolverine sampling effort and detection success in southeast British Columbia 

and southwest Alberta, 2011-2016. Year is the year at the end of the sampling winter and 

the area sampled is the mask area for each study area (Fig. 4). BYK_NP stands for Banff, 

Kootenay and Yoho National Parks. MRG_NP stands for Mount Revelstoke and Glacier 

National Parks. There were 153 individuals among the sampling areas and years which 

equaled 126 individuals because some animals were detected in multiple sampling areas or 

years. ..............................................................................................................................................47 

Table 7. Model selection table to evaluate possible variation in detection success for 

wolverine sampled in southeast British Columbia and southwest Alberta, 2011-2016. D = 

density, g0 = detection probability, sigma = movement parameter, bk = trap specific 

behavior, snowdepth = snow depth at trap site at last check, DNA = separate g0 for each 

genetic lab, Bait = separate g0 for ungulate versus beaver bait, t= separate g0 for each 

trapping occasion. k = the number of model parameters, logLik = model log likelihood 

value, AICc = Akaike Information Criteria corrected for small sample size, ΔAICc = the 

difference in AICc values, weight = relative model weight based on ΔAICc values. ...................48 

Table 8. Mean annual home range size for wolverine in the montane mountains of western 

North America (see SM for data). Sigma is the movement parameter estimated via secr and 

was calculated as sigma = r/2.45 where r is the radius of the 95% home range (Sun et al. 

2014). .............................................................................................................................................49 

Table 9. A comparison of the fit of a selected group of models to estimate density of 

wolverine in southeast BC and southwest Alberta. All models include trap specific 

behavior (g0~bk) and no covariation for spatial parameter (sigma~1). Roadden = road 



xi 

 

density, Snow17 = the number of years with spring snow cover between 2000-2016, 

TrapHarvest = area weighted measure of the number wolverine killed in the trapping 

season previous to sampling, Alpine = the proportion of alpine habitat, ESSF = the 

proportion of upper elevation forest, Hii = human impact index which is a cumulative 

measure based on road density, human habitation and other human footprints. ...........................50 

Table 10. Wolverine densities from selected studies in North American. Confidence 

Intervals assume α=0.05unless stated. Study area size was taken from each publication and 

in some cases was the area trapped and in other cases included a buffer around the traps to 

account for the detection of animals living across the study area boundary. ................................59 

Table 11. DNA sample collection and genotyping success for wolverine hair and scat* 

samples collected in parks complex with barbed wire hair traps and snow tracking. ...................72 

 

 
 
 



1 

 

Executive Summary 

The Canadian Crown of the Continent (CCoC) is one of three zones where 

wolverines can move between Canada and the US, providing the last links for recruitment 

and ultimately gene flow to the highly fragmented population in the US Rocky 

Mountains. A combination of rapidly expanding logging, energy development and 

motorized recreation, along with a growing road network, threatens to fragment and 

diminish connections in this critical transboundary linkage between the US and Canada.  

The province of Alberta recently created two parks in the CCoC expanding 

protection in the Castle Wilderness north of Waterton Lakes National Park and along the 

British Columbia (BC)-Alberta border. The western boundary of the Castle is the 

biologically rich Flathead Valley of BC. The Castle expansion highlighted the need to 

manage the Flathead to maintain viable wolverine populations and the corridors that keep 

them connected and transborder connections with the northern US Rockies. However, 

there is limited baseline data on wolverine density, distribution, or gene flow in this 

critical transboundary area.  

In August 2014, the US Fish and Wildlife Service (FWS) withdrew its Proposed 

Rule to list the distinct population segment (DPS) of the North American wolverine as 

threatened “due to uncertainty in the science and effects of climate change on their 

population.” Stated in their withdrawal was recognition that there is good evidence that 

genetic diversity is lower in wolverines in the DPS than it is in the contiguous habitat in 

Canada and Alaska. Further, the effect of small population sizes and low genetic diversity 

may become more significant if populations become smaller and more isolated. 

Wolverines are a conservation priority both provincially and nationally. 

Wolverines are a species of management focus for BC Ministry of Forests, Lands and 
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Natural Resource Operations (FLNRO) due to uncertainty about sustainability of legal 

trapping and hunting harvest, particularly in the Kootenay Boundary Region. Our work 

addresses information needs by providing a science-based assessment to inform the 

management and conservation of wolverines in the CCOC and Columbia Basin. 

In 2016 with Wilburforce funding, we completed a 3-year non-invasive sampling 

effort in the CCoC, which was a key part of a larger 6-year effort that surveyed the 

central and southern Canadian Rockies. This final year we surveyed the wolverine 

population in the Elk and Flathead Valleys. 

Key outcomes from the project are as follows: 

(1) Deployed 70 sampling sites in 2016, completing a 3-year survey of wolverine 

populations in the Canadian Crown of the Continent ecosystem (CCoC). The project 

sampled 153 sites from 2014-2016. 

(2) 460 hair samples sent to Wildlife Genetics International for analysis, assigning 

12 individuals (8FM: 4M). 

(3) Wolverines occupied 40% of the grid cells within our 2016 study area. We 

found a clear pattern of decreasing occupancy from north to south. 

(4) Population density estimates are low compared to adjacent national parks and 

population estimates from a harvest sustainability analysis conducted in 2007. Density 

estimates confirm occupancy modeling results that densities are highest in the northern 

part of study area (Elk/Cadorna Lakes) and decrease moving south towards the Highway 

3 transportation corridor and the US/Canadian border.  

(5) In our study area, the number of trap lines currently outnumbers the estimated 

resident wolverine population by a factor of four. The study area intersects with 21 trap 
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lines on the Alberta side, and with at least 62 trap lines on the BC side. On the BC side, 

each trap line provides for unlimited harvest. In Alberta, trappers are limited to one 

harvested animal per year. Given the low resident wolverine population, we recommend 

careful evaluation of this management strategy by both BC and Alberta provincial 

governments. Our forthcoming harvest sustainability assessment will provide further 

recommendations on this topic.  

(6) The low wolverine density in this critical transboundary linkage area is of 

concern given the status of wolverines in the contiguous US and reliance on immigration 

from Canadian populations.  

(7) Understanding the limits of trapper harvest on the long-term persistence of 

wolverines in the BC Rockies and effectively managing their habitat and the landscape 

corridors that link them need to be key conservation priorities for both BC and Alberta 

governments and coordinated in a transboundary, international framework.  
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CHAPTER 1.0  INTRODUCTION 

Wolverines naturally occur in low numbers and have extensive home ranges. 

Accordingly, the scale of research should be appropriately large and defined by 

ecological boundaries, instead of political jurisdictions. We designed our research to be at 

the metapopulation scale and transboundary. This “wolverine-scale” approach enables us 

to make strong inferences regarding the effects of land use change and human 

disturbance on wolverine occurrence and genetic connectivity.  

The project enabled us to complete a 3-year sampling effort in the CCoC and 

complete a 6-year effort over a vast area of the central and southern Canadian Rockies. In 

2016 we surveyed the last unsampled portion of the Alberta Rockies (south of 

Kananaskis Country to Highway 3) in addition to a substantial portion of the East 

Kootenay region of the British Columbia Rockies (BC; >9000 km2). The follow-up effort 

allowed us to complete an entire ecoregion-wide wolverine survey in the Canadian 

Rockies ecoregion, from the US-Canadian border north to Banff and Yoho National 

Parks. We created density estimates and occupancy models of wolverine distribution and 

its multiple landscape stressors across an extensive and complex region of the Great 

Northern Landscape.  

We began to expand our collaboration, data sharing and coordination south of the 

US-Canadian border to a multi-state sponsored wolverine-monitoring program starting in 

late 2016.  We merged occupancy and genetic datasets on both sides of the international 

border in order to strengthen dispersal models and identify linkages throughout the 

transboundary Crown of the Continent. Our multi-partner effort in Canada alone has 

resulted in amassing camera and NGS data over an area greater than the size of the entire 



5 

 

Crown of the Continent ecosystem (>51,000 km2 [>19,000 mi2]. The multi-partner 

project invested over $1M in data collection. 

The project helped to fill an urgent need for critical information, given current 

Alberta land-use planning initiatives in the South Saskatchewan watershed, the Flathead 

(BC) wildlife management area, and highway mitigation planning along Highway 3 in 

Alberta and BC. We also used this data to assess the sustainability of trapper harvest in 

BC and communicated these results to regional wildlife managers via one of the PIs 

(GM). Like our previous research in the Banff park complex, we have engaged citizen 

scientists to assist researchers conducting field sampling. Our outreach and education 

efforts will ensure that new research on a 'sentinel' species will inform ongoing and future 

land management and transportation planning with the Alberta and BC Governments, 

Glacier National Park, USDA Forest Service and the Ktunaxa Nation in Canada and the 

US and educate and inform communities.  

This research had the following objectives: 

1. Conduct survey of wolverine occurrence in the Canadian Crown of the 

Continent (CCoC) using noninvasive methods.  

2. Develop occupancy models of wolverine distribution and identify core habitats, 

dispersal corridors and highway mitigation.   

3. Estimate wolverine density in Canadian Rocky and Columbia Mountains. 

Conduct population estimates in order to assess the sustainability of recent trapper 

harvest levels.  

4. Assess wolverine gene flow and fine-scale genetic structure in the Crown of the 

Continent region.   
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CHAPTER 2.0 CONDUCT SURVEY OF WOLVERINE OCCURRENCE 

2.1 Methods 

Our study area was located in the Canadian Crown of the Continent (CCoC) 

ecosystem in southeastern British Columbia (BC) and focused in two main areas: the Elk 

and Flathead Valleys (Figure 1). The 2016 study area was the last of a 3-year sampling 

grid to survey, situated between two important national parks complexes: Banff-Yoho-

Kootenay to the north and Waterton-Glacier to the south. The southern extent of the 2016 

grid was positioned on the Canadian-US border. Study sites in 2014 were situated in the 

Alberta Rockies from the US-Canadian border (Waterton Lakes National Park) to the 

south boundary of Kananaskis Country (Figure 1). In 2015, sampling took place in BC 

north of Highway 3, west of the Elk Valley to the Columbia Trench and south boundary 

of Kootenay National Park. Study areas and sites sampled during all three years 

represented a wide range of biophysical attributes, landscape conditions and levels of 

human disturbance.  

We surveyed wolverine occurrence using a systematic sampling design consistent 

with our previous wolverine research to enable data pooling and large-scale analyses. We 

overlaid a 12 x 12 km grid on the study area. In each grid cell we placed a sampling site 

consisting of a hair trap and remote camera aimed at the hair trap. Hair traps consisted of 

a skinned beaver carcass nailed to a tree and secured with baling wire (Fisher and 

Bradbury 2014). Barbed wire was wrapped from the carcass to ca. 1 m above ground 

level. Sites were set up during the first month (January 2016) and revisited three times at 

monthly intervals to rebait, collect hair samples and service cameras. Three replicate 
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monthly surveys were conducted within each survey year to incorporate detectability into 

occupancy estimates.  

Given the small sample sizes inherent to wolverine population sampling, and the 

fact the sexes will likely need to be modeled separately for spatial capture-recapture 

(SCR) models to estimate wolverine abundance, an “extra” sampling site was placed in 

some grid cells. 
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Figure 1: Three study area grids (12 x 12 km) and location of 162 sampling sites for wolverine 

occurrence in the Canadian Crown of the Continent, 2014-2016. 
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2.2 Results 

2.2.1 Camera-based sampling: 2016 season  

During 2016, we deployed 57 sampling sites over an area of 8208 km2 that were 

checked on average at monthly intervals for three months. We set an additional 13 sites in 

the study area to increase the number of individual detections for modeling wolverine 

abundance and sampled them during two monthly survey sessions. Eight of the 13 

“extra” sites were just outside our study grid within areas sampled in 2014 or 2015. These 

sites were typically near the Continental Divide and set in attempts to detect wolverines 

moving across the Divide between Alberta and BC. Overall, 70 sites were set within the 

2016 study area.  

Of the 70 sampling sites, 26 sites (37%) had confirmed wolverine photo-

detections and 51 confirmed visits by wolverines (Figure 2). More than one individual 

may have visited some sites; however, without the genetic analysis of hair samples 

collected, we only report the confirmed presence of wolverine visiting a sampling site.  

Of 194 monthly sampling sessions during 2016, wolverines visited the sampling 

sites 26 times (13%). Wolverines were never detected at 63% (n=44) of the sites. At 13% 

of the sites, wolverines were detected during one or two sessions only (n=9), while at 

11% of the sites they were detected during all three sessions. Note that 13 of the 70 sites 

(18%) were only sampled during two sessions and herein we report on the absolute 

numbers and do not correct for the 13 sites only sampled twice.  
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Figure 2: Location of 70 sampling sites and frequency of wolverine detections in the Elk and 

Flathead Valley study area, Southern Canadian Rockies, 2016. 
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2.2.2 Canadian Crown of the Continent, 2014-2016  

The following summary covers sampling conducted during the last three years, 

including 2016 (Figure 3). From January to April 2014, 2015 and 2016, our surveys 

encompassed an area of 20,288 km2, more than twice the area of Yellowstone National 

Park. During this time, we deployed 162 sampling sites (153 sites with cameras, 9 

without cameras). One hundred twenty-five sites were set in BC, while 37 were set in 

Alberta.  

To increase the number of individual detections and generate more precise 

estimates of abundance, we set an additional 22 sites within the sampling grid in 2015 

(n=9) and 2016 (n=13). These extra sites did not have cameras in 2015, while in 2016 all 

extra sites had cameras. The extra sites in both years were only sampled during two 

monthly sessions and all were in BC.   

During the 3-year period, 45 sites (29%) had confirmed wolverine photo-

detections (Figure 3). Wolverines were never detected at 71% (n=108) of the sampling 

sites. They were detected at 11% (n=18) of the sites once, 9% (n=14) twice, and 8% 

(n=13) all three times. Note that 22 of the 162 sites (13%) were only sampled during two 

sessions. Of 441 monthly sampling sessions during the three years, wolverines were 

detected during 13% (n=60) of sessions.  
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Figure 3: Location of 162 sampling sites and frequency of wolverine detections in the Canadian 

Crown of the Continent, 2014-2016. 
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2.2.3 Tree-climbing behaviour 

A reluctance of wolverines to climb bait trees may affect detectability using 

noninvasive genetic sampling and result in fewer individuals identified in the study area 

using microsatellite genotyping. At 67% of the visits (35 of 52) wolverines climbed the 

bait tree at least once, while at 33% (n=17) of the site visits wolverines were not observed 

climbing. In contrast, over 90% of the sites-sessions during the 3-year Canadian Rockies 

national parks survey detected wolverines climbing bait trees, while in Kananaskis 

Country climbing occurred at 57% (4 of 7 sites) of the sites. 

2.2.4 Non-target species 

In 2016, we detected 19 vertebrate species at the hair traps. Snowshoe hares were 

most frequent followed by American marten, lynx and wolverine. In 2015, we detected 

18 vertebrate species at the hair traps. American marten were most frequent followed by 

wolves, snowshoe hares, coyotes and wolverines. Fishers were not detected at any 

sampling sites in 2015 or 2016. 
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CHAPTER 3.0  DEVELOP OCCUPANCY MODELS OF WOLVERINE 

DISTRIBUTION 

3.1 Occupancy Estimation Methods (camera-based) 

Occupancy estimation methods strive to estimate the proportion of the survey area 

that is occupied (or used) by the species of interest (MacKenzie et al. 2006). While the 

presence of a wolverine at a sampling site can be confirmed through remote cameras, it is 

generally impossible to confirm their absence. Highly mobile and elusive, wolverines can 

have low detectability, but sampling for three winter months using this double method 

has been shown to greatly increase detectability and provide confidence in our estimates 

of occupancy, and conversely, of absence (Fisher and Bradbury 2014). After three 

months, the probability of missing a wolverine given it was present using this method is 

<10% for hair traps, and approaching zero for camera traps, making it highly reliable 

(Fisher and Bradbury 2014). 

For this report we estimated the proportion of sampling sites occupied by 

wolverines with single season models, using the occupancy modeling program Presence 

v.1.10). Presence uses generalized linear models and maximum likelihood estimation to 

estimate the probability of missing a species when it is present at the site (p=detectability) 

and the probability that a site is occupied (). To estimate these parameters, repeat 

observations (survey or sampling sessions) need to be conducted over a period of time 

during which site occupancy is assumed to be constant.  

We analyzed several subsets of the data: Alberta sites (sampled in 2014 and 

2015), BC sites (sampled in 2015 and 2016), 2016 BC sites only, and finally the 



15 

 

combined Alberta and BC data sets (2014-16). For both the Alberta and BC sites, each 

site was only sampled in one year. Therefore, multi-season models that estimate changes 

in occupancy among years (MacKenzie et al. 2003) were not appropriate. Occupancy 

analysis makes the assumption that movement of animals in and out of sites is random 

(Burton et al. 2015), and also assumes demographic closure at the species level within a 

season – which for wolverines is likely appropriate for a three-month period in winter 

(Fisher and Bradbury 2014).  

We pooled sites sampled in different years into a single analysis. Doing so 

assumes that there is no bias among sampling and among years, e.g., all our "bad" sites 

were sampled together in 1 year, and our "good" in another year, and our design aimed to 

achieve this goal. Including sites sampled in different years does not violate the closure 

assumption, as each site needs only be closed to changes in occupancy for the 3-month 

season it was sampled (Fisher et al. 2014) but not necessarily for a 16-month period. We 

investigated if this assumption of closure for site occupancy across years was justified by 

including models with  varying by year. 

We ran several competing single-season models, each with different assumptions 

about how detectability and site occupancy varied through time and space. For all data 

sets we tested whether the probability of detection was constant, varied among monthly 

surveys, or varied as a trend through time. We likewise tested whether site occupancy 

was either constant, varied by year, varied east-west (UTME), or varied north-south 

(UTMN). For the complete dataset, we also tested whether detectability and occupancy 

varied by Province. 
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For this preliminary analysis, we did not yet investigate the impact of biophysical 

variables such as remoteness, elevation, persistent spring snow or land cover on 

occupancy probability; our objective was a study area-wide estimate of occupancy. 

We ranked competing models using Akaike’s Information Criterion (AIC) scores, 

which provide a balance between the variance in the wolverine data explained by the 

model, and the number of variables needed to explain that variance to identify the best-

supported model of wolverine occupancy (Burnham and Anderson 2002). Lower AIC 

scores indicate a parsimonious model that explains more variance than other models. 

From AICw we calculated evidence ratios for each variable (ER). This is the ratio of the 

sum of all AICw of all models that included a given covariate, vs. those models that did 

not include that covariate. For example, ER=2 suggests there is twice as much evidence 

supporting the inclusion of a covariate, than evidence supporting omitting that variable. 

3.2 Results 

3.2.1 Alberta sampling sites – 2014 and 2015 

The Alberta portion of our study area was sampled in two consecutive years. In 

2014, 20 sampling sites were set from the US-Canada border north to the Highway 3 

corridor in the Crowsnest Pass and including Waterton National Park. In 2015, we 

continued north in the Alberta Rockies sampling 17 sites between the Highway 3 

Crowsnest Highway corridor and the southern extent of Kananaskis Country. Kananaskis 

was surveyed with 43 sites in 2010-11 and 2011-12 (Fisher and Heim 2012) and forms 

part of our greater study area in the central and southern Canadian Rockies.   
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As outlined in our 2015 summary report (Clevenger et al. 2015), there were few 

wolverine detections both in the 2014 Crowsnest Pass-Waterton study area and the area 

sampled to the north of Crowsnest Pass in 2015.  

In 2014, of 20 sampling sites, two sites (Snowshoe and Sofa Creek) had non-

functional cameras during the entire season and were dropped from this analysis. Of the 

18 remaining sites, 4 sites (22%) (Tent Ridge, Gardiner Creek, W Castle and Rowe 

Creek) had camera detections of wolverines, during six sampling sessions (visits during 

two sessions at W Castle and Rowe Creek).  

All sites with wolverine detections had a detection during the third sampling 

session, while there were no detections during the second session. Despite the few 

detections, there was a strong geographic pattern, with all sites with detections being 

located within or in close proximity to the Continental Divide. 

The Alberta portion of the 2015 study area consisted of 17 sampling sites 

(including Beehive and Tornado Pass); only 3 sites (17%) (Beehive, Tornado Pass, 

Racehorse Pass) had confirmed wolverine camera detections and 4 visits (two visits 

occurred at Tornado Pass).   

Detection probability p varied by sampling session (hereafter referred to as 

“survey” in the occupancy analysis; SURVEY; ER=2.02). P of the top model 

(psi(UTME), p(SURVEY)) was low for the first two sessions, estimated at 0.28 (s.e. =  

0.17) for both surveys. Detection probability for the third survey was 1.00 (s.e. = 0.00); 

however, such border estimates can be unreliable especially in light of the small sample 

size. There was no evidence for a temporal trend among surveys (TREND; ER = 0.44).   
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The east-west gradient in wolverine detections were reflected in estimates of 

occupancy probability ψ (UTME; ER = 1.36), and the top model (psi(UTME), 

p(SURVEY)) estimated ψ as a gradient along UTME: the westernmost site had an 

estimate of 0.51 (s.e. = 0.12), and the easternmost site had an estimate of 0.01 (s.e. = 

0.01; Table 1). There was no evidence for a north-south gradient (UTMN; ER = 0.13). 

Year had no impact on ψ (YEAR; ER = 0.10), which suggests that there were not issues 

with pooling data among years.  We estimated an area-wide occupancy probability (as 

opposed to site-specific based on UTMs) to allow comparison with other study areas. 

This ψ estimate comes from the third highest ranking model (psi(.),p(SURVEY)), which 

had a ΔAIC of 1.93 and was therefore not markedly less supported than the top model 

(Burnham and Anderson, 2002). Ψ for this model was 0.21 (s.e.=0.07). The naive 

estimate of ψ for the combined Alberta study areas was 0.20. The corrected estimate is 

close to the naïve uncorrected estimate, due to high probabilities of detection yielded by 

this method (Fisher and Bradbury 2014). This gives us a great deal of confidence that 

wolverine are indeed absent from places in which we did not detect them. 
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Table 1. Selection of occupancy models for wolverines detected by cameras in the combined 

Alberta study area, combined 2014 and 2015. Detectability (p) could be constant (.), vary 

independently among SURVEYs, or as a TREND among surveys. Occupancy (ψ) could be 

constant (.), vary north-south (UTMN), east-west (UTME), or between YEARs. 

Model AIC ΔAIC AIC 
weight 

Model 
Likelihood 

K -
2*LogLike 

psi(UTME),p(SURVEY) 57.35 0.00 0.38 1.00 5 47.35 

psi(UTME),p(TREND) 58.91 1.56 0.18 0.46 4 50.91 

psi(.),p(SURVEY) 59.28 1.93 0.15 0.38 4 51.28 

psi(UTMN),p(SURVEY) 60.50 3.15 0.08 0.21 5 50.50 

psi(.),p(TREND) 60.85 3.50 0.07 0.17 3 54.85 

psi(YEAR),p(SURVEY) 61.09 3.74 0.06 0.15 5 51.09 

psi(UTMN),p(TREND) 62.14 4.79 0.04 0.09 4 54.14 

psi(YEAR),p(TREND) 62.67 5.32 0.03 0.07 4 54.67 

psi(UTME),p(.) 63.80 6.45 0.02 0.04 3 57.80 

psi(.),p(.) 65.80 8.45 0.01 0.01 2 61.80 

psi(UTMN),p(.) 67.23 9.88 0.00 0.01 3 61.23 

psi(YEAR),p(.) 67.66 10.31 0.00 0.01 3 61.66 
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3.2.2 British Columbia sampling sites – 2015 and 2016 

The combined BC datasets for 2015 and 2016 had 116 sites, with 15 of 46 sites 

(33%) visited at least once in 2015, and 26 of 70 sites (37%) visited at least once in 2016. 

Thirteen sites (11%) had one visit, 11 sites (9%) had two visits, 13 sites (11%) had three 

visits, and 79 sites (68%) had no visits. Naive occupancy in BC for both years combined 

was 35%. 

Similar to the Alberta surveys, there was a distinct geographical pattern; sampling 

detected wolverines mostly along the Continental Divide, albeit not as closely to it as on 

the Alberta side. In addition, there was a potential influence of proximity to protected 

areas. It is unclear whether this may be an effect of less trapping pressure and/or the 

relative inaccessibility of human and potential disturbance. The only sites with wolverine 

detections far from the Divide and close to the western edge of the study area were 

situated close to protected areas (Height of the Rockies Provincial Park, BC; Glacier 

National Park, MT).  

In the BC dataset, detection probability p did not vary by survey (SURVEY; ER = 

0.71) or over time (TREND; ER = 0.34). Unlike the Alberta data, occupancy probability 

ψ did not vary with either position along an east-west gradient (UTME; ER = 0.66), along 

a north-south gradient (UTMN; ER = 0.24) or with sampling year (YEAR; ER = 0.27). 

Accordingly, the ΔAIC - values of all models were <2, meaning that of the models 

considered, none had significantly more support by the data over all other models (Table 

2). To examine an area-wide occupancy estimate consistent with other regions, we report 

the estimates for p and ψ of the last-ranked, but simplest model (psi(.),p(.)): The estimate 

of ψ was 0.35 (s.e. = 0.05, CI: 0.26 – 0.52), and the estimate for p was 0.67 (s.e. = 0.05). 

In comparison, naive occupancy for this dataset was 0.35. 
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Table 2. Selection of occupancy models for wolverines detected by cameras in the combined BC 

study area, 2015/2016. Detectability (p) could be constant (.), vary independently among 

SURVEYs, or as a TREND among surveys. Occupancy (ψ) could be constant (.), vary north-

south (UTMN), east-west (UTME), or between YEARs. 

Model AIC ΔAIC AIC 
weight 

Model 
Likelihood 

K -
2*LogLike 

psi(UTME), 

p(SURVEY) 279.29 0 0.16 1.00 5 269.29 

psi(UTME),p(.) 279.72 0.43 0.13 0.81 3 273.72 

psi(UTME),p(TREND) 280.27 0.98 0.10 0.61 4 272.27 

psi(YEAR),p(SURVEY) 280.53 1.24 0.09 0.54 5 270.53 

psi(UTMN), 

p(SURVEY) 280.66 1.37 0.08 0.50 5 270.66 

psi(.),p(SESSION) 280.70 1.41 0.08 0.49 4 272.7 

psi(YEAR),p(.) 280.96 1.67 0.07 0.43 3 274.96 

psi(UTMN),p(.) 281.15 1.86 0.06 0.39 3 275.15 

psi(.),p(.) 281.17 1.88 0.06 0.39 2 277.17 

psi(YEAR),p(TREND) 281.51 2.22 0.05 0.33 4 273.51 

psi(UTMN),p(TREND) 281.73 2.44 0.05 0.30 4 273.73 

psi(.),p(TREND) 281.74 2.45 0.05 0.29 3 275.74 

 

3.2.3 British Columbia study area – 2016 

Although the previous model did not suggest there were fundamental differences 

in occupancy probability by sampling year (which in this case equaled region as well as 

time), we were still interested in estimating occupancy probability for the 2016 survey 

independently. In the 2016 BC dataset, detection probability p did not vary with survey 

(SURVEY, ER = 0.60) or time (TREND; ER = 0.41; Table 3), although the top model 

indicated variation by survey, it was not well supported. Occupancy probability ψ did not 
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vary by an east-west gradient (UTME; ER = 0.2). However, there was evidence for a 

north-south gradient in occupancy probability, with higher ψ at more northern sites 

(UTMN; ER = 1.80). 

Estimated p for the top model (psi(UTMN), p(SURVEY)) for the first survey was 

0.56 (s.e. = 0.10). The estimate for the second survey was highest, at 0.82 (s.e. = 0.08). 

The third survey had an estimated p of 0.72 (s.e. = 0.11). Occupancy probability 

estimates for the top model ranged between 0.70 (s.e. = 0.06) for the northern most site to 

0.23 (s.e. = 0.05) for the southernmost site. The estimate of ψ was 0.40 (s.e. = 0.06, CI: 

0.29 – 0.52) and naive occupancy for this dataset was 0.39. 

 

Table 3. Selection of occupancy models for wolverines detected by cameras in the 2016 BC study 

area. Detectability (p) could be constant (.), vary independently among SURVEYs, or as a 

TREND among surveys. Occupancy (ψ) could be constant (.), vary north-south (U UTMN), or 

vary east-west (UTME). 

Model AIC ΔAIC AIC 
weight 

Model 
Likelihood 

K -
2*LogLike 

psi(UTMN),p(SESSION) 177.71 0.00 0.24 1.00 5 167.71 

psi(UTMN),p(.) 177.99 0.28 0.21 0.87 3 171.99 

psi(UTMN),p(TREND) 178.24 0.53 0.19 0.77 4 170.24 

psi(.),p(SESSION) 180.20 2.49 0.07 0.29 4 172.20 

psi(.),p(.) 180.30 2.59 0.07 0.27 2 176.30 

psi(UTME),p(SESSION) 180.51 2.80 0.06 0.25 5 170.51 

psi(UTME),p(.) 180.58 2.87 0.06 0.24 3 174.58 

psi(.),p(TREND) 180.70 2.99 0.05 0.22 3 174.70 

psi(UTME),p(TREND) 180.99 3.28 0.05 0.19 4 172.99 
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3.2.4 Canadian Crown of the Continent, 2014-2016 

Although data collected among different years can be pooled for analysis as long 

as no biases in sampling are expected (MacKenzie et al. 2006), we still wished to perform 

due diligence by examining evidence for a potential time (and space) effect in occupancy 

probability by using a year covariate for ψ. One potential issue with this is that year of 

study may reflect the quality of wolverine habitat sampled among years. This is likely the 

case in our study with 2014 appearing to be the lowest quality habitat, 2016 the highest 

quality, and 2015 of moderate quality.  

Because our methodology was consistent during all three years, we were not as 

concerned with a year effect in detectability. Climate and related environmental factors 

may affect p differently each year, but we expect that effect to be relatively small 

compared to other variability. 

The simplest possible model, (psi(.),p(.)), returned an estimate of detectability p  

of 0.64 (s.e. = 0.05; CI: 0.25 -  0.40), and of  occupancy probability ψ of 0.32 (s.e. = 0.04; 

CI: 0.54 -  0.73). As expected, however, year had an effect on ψ (YEAR; ER = 1.43; 

Table 4 and 5). There was evidence for a north-south gradient in ψ, with more northern 

sites having a higher occupancy probability (UTMN; ER = 2.06). There was no evidence 

for a strong effect of any other covariates on either p or ψ.  

The highest ranking model (psi(UTMN+YEAR), p(TREND)) estimated p for 

survey one at 0.54 (s.e. = 0.07), for survey two at 0.66 (s.e. at 0.05), and survey three at 

0.76 (s.e. = 0.07; Table 4). The estimates for ψ varied by year and UTMN, with 2016 

having highest, and 2014 having lowest estimates for ψ. The site with the highest 

estimate, BC E1 (Elk Lakes), was one of the northernmost sites and sampled in 2016. 

Coincidentally it did not have any wolverine visits. Its estimate was 0.52 (s.e. = 0.06; CI: 
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0.40 - 0.64). The site with the lowest estimate of ψ, ABS 20 (Beebe Flats), was one of the 

southernmost sites and sampled in 2014 (ψ: 0.10; s.e. = 0.04; CI: 0.04 - 0.20).  

 

Table 4. Selection of occupancy models for wolverines detected by cameras in the combined 

Alberta and BC study areas (2014 - 2016). Detectability (p) could be constant (.), vary 

independently among SURVEYs, vary as a TREND among surveys, vary across YEARs or 

between PROVinces. . Occupancy (ψ) could be constant (.), vary north-south (UTMN), vary east-

west (UTME), across YEARs, or between PROVinces. 

Model AIC ΔAIC 
AIC 
weight 

Model 
Likelihood 

K 
-
2*LogLike 

psi(UTMN+YEAR),p(TREND) 341.17 0.00 0.24 1.00 5 331.17 

psi(UTMN+YEAR),p(SURVEY+YEAR) 341.37 0.20 0.21 0.90 7 327.37 

psi(YEAR),p(TREND) 344.28 3.11 0.05 0.21 4 336.28 

psi(UTMN),p(PROV) 344.34 3.17 0.05 0.20 4 336.34 

psi(UTMN),p(TREND) 344.39 3.22 0.05 0.20 4 336.39 

psi(UTMN+PROV),p(SURVEY+PROV) 344.40 3.23 0.05 0.20 7 330.4 

psi(UTMN),p(YEAR) 344.69 3.52 0.04 0.17 4 336.69 

psi(YEAR),p(PROV) 345.54 4.37 0.03 0.11 4 337.54 

psi(PROV),p(TREND) 345.57 4.40 0.03 0.11 4 337.57 

psi(.),p(PROV) 345.61 4.44 0.03 0.11 3 339.61 

psi(YEAR),p(SURVEY) 345.66 4.49 0.03 0.11 5 335.66 

psi(UTMN),p(SURVEY) 345.74 4.57 0.02 0.10 5 335.74 

psi(.),p(TREND) 346.02 4.85 0.02 0.09 3 340.02 

psi(YEAR),p(YEAR) 346.07 4.90 0.02 0.09 4 338.07 

psi(.),p(YEAR) 346.25 5.08 0.02 0.08 3 340.25 

psi(PROV),p(YEAR) 346.80 5.63 0.01 0.06 4 338.8 

psi(UTME),p(PROV) 346.81 5.64 0.01 0.06 4 338.81 

psi(YEAR),p(.) 346.86 5.69 0.01 0.06 3 340.86 
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Model AIC ΔAIC 
AIC 
weight 

Model 
Likelihood 

K 
-
2*LogLike 

psi(PROV),p(SURVEY) 346.93 5.76 0.01 0.06 5 336.93 

psi(UTMN),p(.) 346.94 5.77 0.01 0.06 3 340.94 

psi(PROV),p(PROV) 346.97 5.80 0.01 0.06 4 338.97 

psi(.),p(SURVEY) 347.39 6.22 0.01 0.04 4 339.39 

psi(UTME),p(TREND) 348.02 6.85 0.01 0.03 4 340.02 

psi(PROV),p(.) 348.14 6.97 0.01 0.03 3 342.14 

psi(UTME),p(YEAR) 348.18 7.01 0.01 0.03 4 340.18 

psi(.),p(.) 348.58 7.41 0.01 0.02 2 344.58 

psi(UTME),p(SURVEY) 349.38 8.21 0.00 0.02 5 339.38 

psi(UTME),p(.) 350.58 9.41 0.00 0.01 3 344.58 

 

Table 5. Evidence ratios (ER) of the covariates used in models of combined AB - BC occupancy 

analysis. 

 

Parameter 
Covariate ER 

P SURVEY 0.51 

P TREND 0.64 

P YEAR 0.46 

P PROV 0.21 

ψ UTMN 2.06 

ψ UTME 0.04 

ψ YEAR 1.43 

ψ PROV 0.14 
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3.3 Discussion 

3.3.1 British Columbia study area - 2016  

Estimates of occupancy can act as a surrogate for abundance for territorial species 

such as wolverine when the sites sampled approximate territory sizes (MacKenzie et al. 

2006). The last three years our annual surveys covered on average 6700 km2 and were 

designed around a 12 x 12 km sampling grid, which is based on the average home range 

size for female wolverines (Banci and Harestad 1990, Inman et al. 2012b). The estimate 

of wolverine occupancy in our 2016 BC Rockies study area was 0.40 (s.e. = 0.04;). 

Previous estimates of occupancy in the Canadian Rockies were 0.88 (s.e. = 0.05) in the 

Banff-Yoho-Kootenay park complex (Clevenger and Barrueto 2014) and 0.36 (s.e. = 

0.11) in Kananaskis Country (Heim 2015). Our 2014 survey in the Waterton-Crowsnest 

Pass area had one of the lowest estimates of occupancy in the Canadian Rockies to date 

(ψ=0.17, s.e. = 0.09), rivaling the highly impacted west-central Foothills (ψ = 0.14, s.e. = 

0.07).  

Noninvasive surveys conducted in the Columbia Mountains had occupancy 

estimates ranging from 0.38 (s.e. = 0.10) in the southern Purcells to 0.71 in the main 

Purcell Range (s.e. = 0.10) (Kortello and Hausleitner 2012, 2013; Hausleitner and 

Kortello 2014). When viewed in context of these two mountain systems, our 2016 survey 

area in British Columbia had moderate wolverine abundance relative to other areas 

sampled thus far in the Canadian Rockies and Columbia Mountains. 

3.3.2 Canadian Crown of the Continent  

We found that wolverine occupancy in the CCoC differed markedly between 

years and study areas; however, this is likely a result of habitat quality among areas 

sampled each year. The lowest occupancy estimates were from the southern Alberta 
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Rockies in 2014, where wolverines occupied roughly 20% of the landscape.  This 

occupancy estimate is lower than estimates from Kananaskis Country, Alberta (Heim 

2015), and rivaled the industrially developed Alberta foothills further north (Fisher et al. 

2013). Occupancy increased east to west in the Alberta survey area, with higher 

occupancy close to the Continental Divide. The probability of detection varied monthly 

in all study areas and in the combined data set, but was relatively high by the last session, 

lending confidence that where wolverines were not detected, they did not occur. The 

probability of false absence was low, meaning there was high chance that we detected a 

wolverine given it was present at a camera site each year, very strongly supporting our 

results: wolverines did not occur where we did not detect them. 

Wolverine occupancy was greatest in the 2016 BC study area, but varied 

markedly through space. Similar to our summary results in 2015 (Clevenger et al. 2015), 

we found a clear pattern of decreasing occupancy from north to south. The results from 

our 2016 survey reinforce the pattern of occupancy we observed in the CCoC last year. 

This north-south gradient in occupancy mirrors reported wolverine occurrence in the 

Columbia Mountains (Kortello and Hausleitner 2013, 2015; Hausleitner and Kortello 

2014), the next major north-south range west of the Canadian Rockies. Here a notable 

decline in wolverine detections occurred from north to south in both the Selkirk and 

Purcell Mountains in addition to evidence of low genetic connectivity between the south 

Purcell population and other populations in southeastern British Columbia (Hausleitner 

and Kortello 2014). These findings are noteworthy given the Columbia and Rocky 

Mountains are two of the three remaining areas where wolverines and other wide-ranging 

carnivores can move between Canada and the U.S.  
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The north-south pattern from our CCoC study area differs from occupancy 

patterns observed in our 2014-2015 Alberta sampling, and in the Banff-Yoho park 

complex – Kananaskis Country and the Willmore Wilderness – Foothills where a 

decreasing west-east pattern of wolverine occurrence was reported (Fisher et al. 2013, 

Heim 2015). Wolverine occupancy in the CCoC study area decreased significantly 

moving south and the mechanisms for this variability have yet to be explained, but will 

be the focus of our future analysis (see below). 

At first glance, wolverine camera-detections in our CCoC study area appear to be 

associated with proximity to the Continental Divide, and areas with low levels of 

landscape disturbance. Previous surveys in the Canadian Rockies revealed wolverines are 

more abundant in rugged and remote areas protected from human activity and landscape 

disturbance (Fisher et al. 2013, Clevenger and Barrueto 2014, Heim 2015). Hausleitner 

and Kortello (2014) found similar patterns of wolverine occurrence in the Columbia 

Mountains where the majority of wolverine detections were within or immediately 

adjacent to large protected areas: provincial parks, nature and wilderness conservancies. 

The geographic location of these relatively protected areas, or their proximity to source 

populations, may account for the north to south gradient in distribution.  

The Canadian Rockies have been identified as a potential corridor for wolverine 

movement into the US (Schwartz et al. 2009) and the most likely long-term prospect for 

transboundary wolverine habitat connectivity given climate change scenarios (Copeland 

et al. 2010). The results we present are preliminary; nonetheless, our data summary 

suggests lower populations than expected and lower connectivity between the US-Canada 

border and populations to the north. Lower wolverine occupancy estimates in the 
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southern/transboundary regions compared to those in the central Columbia and Rocky 

Mountains may be a result of habitat quality and/or human disturbance on wolverine 

distribution and abundance.  

Several wolverine researchers have recommended the creation of refugia (such as 

those created by protected areas like the Banff-Yoho-Kootenay and Waterton-Glacier 

national park complexes) or restricting or eliminating trapping quotas – as a crucial 

element in the overall conservation of wolverine (Weaver et al. 1996, Krebs et al. 2004). 

Due to the large home ranges of wolverines and their low density, an effective 

conservation strategy will require large areas managed at both regional and 

transboundary metapopulation scale. Similar transboundary management schemes have 

been developed for other wide-ranging carnivores in the past (Proctor et al. 2012). 

Our next steps are to use the data collected the last three years in the CCoC to 

create spatially explicit capture-recapture (SCR) models to produce the first density 

estimates of wolverines in this area. As part of this analysis, our wolverine density 

estimates will inform management of wolverine harvest to ensure long-term persistence 

and viability of wolverines in one of the last remaining linkage zones with populations in 

the Northern Continental Divide Ecosystem. Further, we will apply the SCR method 

across a gradient of human land-uses and landscape characteristics in the CCoC to assess 

potential impacts on wolverine spatial distribution, abundance and landscape connectivity 

(Royle et al. 2013, Graves et al. 2014). 

 

 



30 

 

CHAPTER 4.0  ESTIMATE WOLVERINE DENSITY IN CANADIAN ROCKY 

AND COLUMBIA MOUNTAINS 

4.1 Introduction 

There is considerable conservation concern for wolverines (Gulo gulo) throughout 

their range in North America (Ruggierio et al. 2007, COSEWIC 2014). Wolverines were 

extirpated in much of their southern and eastern range post-European contact and many 

populations along the current southern range are still partly or entirely isolated from the 

continuous population in northwest North America (Aubry et al. 2007, COSEWIC 2014, 

IDFG 2014). One conservation risk to wolverine populations in some parts of their range 

is the demographic impact of fur trapping (Krebs et al. 2004, Lofroth and Ott 2007). 

Western and northern Canada and Alaska allow trapping. Portions of southwest British 

Columbia (BC) and most of the lower 48 states closed trapping several decades ago. 

Wolverine are described as facultative scavengers and the amount of food they 

scavenge is related to prey abundance, the proximity of the prey to carrying capacity, and 

the presence of other large carnivores that kill large prey that wolverine could not kill 

themselves (van Dijk et al. 2008, Mattisson et al. 2016). In Scandinavia, the more food-

limited reindeer (Rangifer tarandus) there were, the more reindeer calves wolverine 

killed in spring (Mattisson et al. 2016). Wolverine reproduction appears to be contingent 

on adequate female body condition (Persson 2005) and even adult females regularly fail 

to reproduce. Survival of wolverine may also be influenced by food limitation (Saether et 

al. 2005). Researchers in southern Sweden have shown strong density-dependence in 

survival of wolverine (Broseth et al. 2010). Food availability, moderated by variation in 

ungulate abundance, vulnerability and kills by other predators— including people— 
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across space and time limits wolverine growth. The large potential variation in wolverine 

vital rates suggests that population growth and density of wolverine could be quite 

variable across its range. 

Wolverine also hunt smaller prey such as snowshoe hares (Lepus americanus), 

marmots (Marmota caligata) and ground squirrels (Spermophilus columbianus; Lofroth 

et al. 2007, Inman et al. 2015) and they confine their use of the landscape to higher 

elevation ecosystems in montane environments in North America (Inman et al. 2012b) 

where these species are often most common. Caribou (Rangifer tarandus) and mountain 

goats (Oreamnos americanus) are the most common ungulates found in these 

environments in winter.  

The distribution of wolverine and the location of their dens has been linked to the 

presence of continuous snow cover during the spring denning period (Copeland et al. 

2010, Magoun et al. 2017). These authors also found that radio telemetry locations and 

home ranges in spring were mostly in areas of continuous spring snow. The functional 

link is not clear but there are three working hypotheses to explain the link between spring 

snow and wolverine distribution. The first hypothesis proposes the need for snow to 

protect the safety and thermoneutrality of the young in the den. The second hypothesis is 

based on the observation that wolverine cache food for winter. Inman et al. (2012a) 

suggested that wolverine require continuous snow during late-fall to spring to preserve 

food during winter because food is particularly scarce during this season. Third, 

wolverine may be physically adapted to snow covered temperate environments and these 

adaptations may exclude them from moderate environments (Lofroth et al. 2007, 

Schwartz et al. 2009). 
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Wolverine density has been studied in one area of southern Canada, but see 

Barrueto et al. (submitted) for an earlier analysis of a portion of the data included here. 

Using live-capture data and open capture-recapture models during 4 years of study, these 

researchers calculated a mean density across years, and they used camera sightings and a 

closed model to obtain a single estimate of abundance during one winter of study 

(Lofroth and Krebs 2007). Both these estimates were likely biased low because the 

substantive food baits placed at the capture sites meant previously captured animals were 

more likely to be captured in subsequent trapping sessions than animals that had never 

been captured. However, density estimates were not corrected for the partial residency of 

those animals living near the study area boundary, which probably caused a positive bias 

in the density estimates. Wolverine density was also estimated in a sister study that used 

very similar methods in the northern limit of the montane mountains in central BC. These 

two studies yielded density estimates of about three individuals per 1000 km2.  Other 

estimates of wolverine density, in similar ecosystems, were similar (Lofroth and Krebs 

2007), except for one study in Idaho (Hornocker and Hash 1981) which observed much 

higher density. We suspected that biases influenced previous estimates of wolverine 

density though the combined effect on the density estimates is unclear.  

Natural mortality of wolverines has been observed to vary greatly from 4-20% per 

year (Krebs et al. 2004, Squires et al. 2007, Persson et al. 2009) and reproduction is very 

low for an animal of this size. Females produce <0.5 female young per year (Persson et 

al. 2006). Previous researchers used simple population models and observed estimates of 

survival and reproduction to estimate the influence of trapping mortality on population 

growth. They concluded that wolverine demographics are sensitive to adult mortality and 
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that current harvest rates in North America may limit population growth, except perhaps 

in parts of northern Canada and Alaska where mortality rates appear to be lowest (Krebs 

et al. 2004, Squires et al. 2004, Lofroth and Ott 2007). None of these models incorporated 

density dependence or accommodated differential sex and age-based trapping 

vulnerabilities and hence they may have under-estimated sustainable harvest rates.  

A specific analysis of harvest sustainability in BC by Lofroth and Ott (2007) 

suggested recent levels of wolverine kill were sustainable at the provincial scale but 

harvest in some areas may not have been sustainable. They found that uncertainty in the 

harvest data was an important part of the conservation risk and recommended improved 

data collection and evaluation. A different probabilistic modeling approach also 

concluded that adult mortality was the population parameter of greatest sensitivity 

(Dalerum et al. 2007). These authors gamed their model with various realistic harvest 

scenarios and immigration levels and found that the model population was sensitive to 

adult female harvest and that immigration was necessary to ensure long-term viability 

and avoid extirpation. Saether et al. (2005) examined conservation risk in the 

Scandinavian wolverine population using a population viability approach and found that 

harvest posed the largest conservation risk to the population. In summary, previous 

studies of wolverine demography suggest that the species can support small, male-

dominated harvests and that harvesting isolated populations presents considerable risk of 

population decline or extirpation.  

We used baits to sample wolverines across large areas, genotypes from hair 

samples to identify individuals, and spatial mark-recapture analysis to estimate 

population density. Juvenile and yearling dispersal begins in January, when we began our 
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trapping, and males probably disperse more commonly than females (Magoun and 

Copeland 1998, Morten Vangen et al. 2001, Gervasi et al. 2015). Sub-adults have larger 

home ranges than adults while they are searching for a permanent range; sub-adult males 

cover particularly large areas (Inman et al. 2012b). In addition, pregnant female 

wolverines begin looking for dens in January and their young are born in February or 

March (Magoun 1985, Banci 1994, Magoun and Copeland 1998). Hence, breeding 

females had restricted home ranges during our sampling period. The variation in home 

range size among sex and age cohorts is enormous in wolverine and likely greater during 

our sampling period in late winter than any other time of year. Resident females with 

young may have home ranges <100 km2 while dispersing sub-adult males may have 

home ranges >2000 km2. Hence, we may expect considerable bias in all density 

estimators that do not specifically account for space and individual variation in detection 

probability due to these space use patterns (Royle et al. 2011).  

We used institutional harvest data to estimate the range of recent wolverine 

trapping kills. We then calculated observed wolverine harvest rates using our estimates of 

population size and compared these to sustainable harvest rates as predicted from 

population models to evaluate conservation risk. We also built a population model using 

a meta-analysis of vital rates, the age and sex ratios of trapped animals and our observed 

density estimates, to calculate putative sustainable harvest rates. 

The main objective of this study was to evaluate the demographic risk of trapping 

to wolverine populations in southeast BC and the adjacent Rocky Mountains of southern 

Alberta. Second, we tested the hypothesis that spring snow was related to the density of 

wolverine. Lastly, we investigated habitat factors that were related to the density of 
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wolverine to gain insights into their habitat needs and to predict density in areas that we 

did not sample. 

4.2 Study Area 

Our study area included the Kootenay-Boundary region in southeast BC and the 

southern Rocky Mountains and foothills of southwest Alberta (Figure 4). This area is 

mountainous and included parts of the Monashee, Selkirk, Purcell, and Rocky Mountains. 

Many large lakes, highways and human settlements occur in low elevation valleys and 

may create resistance to movement. Extensive forest harvest has occurred throughout the 

area and mining was widespread historically but is much less active currently. Both 

industries built and continue to build many roads. Winter recreation (snow machine use, 

ski resorts, helicopter or snowcat-access skiing, ski lodges and backcountry skiing) was 

common. Provincial and national parks and protected areas occur throughout the area.  
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Figure 4. Wolverine winter sampling areas showing trap locations and secr mask boundaries for 

each area in matching colors. Mask boundaries were created by assuming large lakes were hard 

population boundaries and, where boundaries did not exist, the mask was extended approximately 

40 km beyond the outer sample sites. The year of sampling is given with the study area name and 

is the year during late winter. 
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Elevations range from 400 m to >3000 m with major variation in summer and 

winter precipitation. In general, the mountains become less rugged from north to south, 

which leads to lower precipitation as well, though precipitation also roughly declines 

from west to east. Low elevation forests are composed of western redcedar (Thuja 

plicata), western hemlock (Tsuga heterophylla), Douglas fir (Pseudotsuga menziesii), 

Ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), trembling aspen 

(Populus tremuloides), and western larch (Larix occidentalis). At higher elevations, 

Englemann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests 

transition to treeless alpine meadows, rock and ice (MacKillop and Ehman 2016).  

Potential wolverine ungulate prey included mountain goats, mountain caribou, 

mountain sheep (Ovis canadensis), moose (Alces alces), elk (Cervus elaphus), mule deer 

(Odocoileus hemionus), and white-tailed deer (O. virginianus). Only mountain goats and 

caribou were found at high elevations consistently during winter; goats were irregular in 

their distribution and rarely abundant (Poole 2006). Caribou have declined to <200 

individuals as of 2018 (Aaron Reid, BC Ministry of FLNRORD, pers. comm.) and were 

confined to four areas with large expanses of the study area without caribou. Small 

mammal prey included; hoary marmots, Columbian ground squirrels, snowshoe hares, 

American pika (Ochotona princeps) and porcupine (Erithizon dorsatum; Lofroth et al. 

2007).  

4.3 Methods 

We collected samples from wolverines during late winter by remotely removing 

hair and occasionally collecting scat samples. We sampled five study areas in the West 

Kootenays during 2012- 2016 and three study areas in the East Kootenays during 2014-
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2016 in southeast BC and southwest Alberta. The project partitioned each study area into 

10 by 10 km cells that approximate the minimum size of a female home range. We set 

one or two bait sites in each cell and checked them twice in the West Kootenays and 

three times in the East Kootenays at roughly monthly intervals. Because of the rugged 

nature of the terrain, we selected sites for ease of access and used local knowledge of 

wildlife movements when available. Hair traps were made by wrapping barbed wire 

around a baited tree to capture hair from an animal that climbed the tree after the bait, 

similar to Mulders et al. (2007). We used a deer or elk head as bait in the West Kootenays 

and a skinned beaver carcass in the East Kootenays and Alberta. We attached bait to the 

tree approximately two meters from the ground or snow surface. Each time we re-visited 

the site, the barbed wire was examined for hairs and the bait replenished if necessary. 

Each barb was burned after hair was collected to clean the wire of any remaining hair. 

We collected and stored hair in paper envelopes in a dry environment. In the East 

Kootenays a camera was attached to a nearby tree to photograph animals that visited the 

site. During each visit to the bait site we looked for wolverine tracks and scat. We also 

included data from five different sites in 2015 and 2016 in the East Kootenays sampled 

contemporarily for two different environmental impact assessments using similar 

methods. 

Additionally, we collected data using similar methods in two areas centered 

around national parks. The primary objective of these studies was to examine movement 

across the highways that crossed the parks (Sawaya et al. submitted). We collected data 

for 5 years near Revelstoke in Mt. Revelstoke and Glacier National Parks and for 3 years 

in Banff, Kootenay and Yoho National Parks. These studies used three sampling sessions 
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and beaver as bait like our East Kootenay study areas. See Barrueto et al (submitted) for 

more detail on sampling methods in the East Kootenay National Parks. Hair samples 

were sent to Wildlife Genetics International (WGI) in Nelson B.C. for microsatellite 

genotyping. Only samples that had >1 guard hair with a root or >5 underfur were selected 

for analysis and we used up to 10 guard hairs or approximately 30 underfur in an 

extraction. The project extracted DNA using QIAGEN DNeasy Tissue kits following the 

manufacturer’s instructions (Qiagen Inc., Toronto, ON). Species identification was based 

on a sequence-based analysis of a segment of the mitochondrial 16S rRNA gene (Johnson 

and O’Brien 1997). For samples that yielded wolverine DNA, WGI utilized multilocus 

genotyping, consisting of a ZFX/ZFY sex marker, and 7 additional microsatellite markers 

for individual identification. Error checking followed established rules (Paetkau 2003), 

which have been exhaustively tested using grizzly bear hair and found to deliver very low 

error rates (Kendall et al. 2009). The studies in the national parks were first analyzed at 

the Rocky Mountain Research station laboratory in Missoula, Montana using nearly 

identical methods. One sample from each individual was later reanalyzed at WGI in order 

to verify that individual identities were comparable between the labs and studies in order 

to combine the datasets.  

We estimated wolverine trapping harvest rates using government collected kill 

data. In British Columbia (BC) and Alberta, trapping is regulated by a registered trapline 

system where licensed trappers must either own a registered trapline, or have permission 

to trap on private land or someone else’s trapline. Very few areas are trapped by more 

than one person so trapping effort tends to be well dispersed in Canada (Slough et al. 

1987). In southeast BC and southwest Alberta, trappers may trap wolverine between 1 
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November and 31 January and each trapper may catch one wolverine per year in Alberta 

while there is no limit in BC. Most public land not classed as a park is included in a 

registered trapline and traplines even occur in some recent provincial parks. Trapper kill 

is recorded by mandatory reporting in southern BC and Alberta and by the fur sales 

recording system throughout BC. Hunters must submit all wolverines they kill to a 

government inspector, though few wolverines are killed by hunters. Occasional 

wolverines kills occur in highway collisions, but few of these are recorded. See Lofroth 

and Ott (2007), Hatler and Beal (2003) and Webb et al. (2013) for more details on 

wolverine trapping and management in BC and Alberta. 

4.3.1 Spatial capture-recapture analysis 

We used spatial capture-recapture analysis (secr) to estimate wolverine density 

(Efford 2004, Efford 2018). This method is fast becoming the standard method for 

estimating animal density (Royle et al. 2013). Spatial capture-recapture methods estimate 

three parameters: detection, a spatial parameter and density. The detection parameter can 

be likened to the detection probability in non-spatial capture-recapture; although in this 

case, detection probability declines with distance from the animal’s putative home range 

center. The spatial parameter is an index of the range size during sampling, and along 

with the trap and animal location data, is used in estimating residency of individuals in 

and near the sampling area. The final parameter is density, which is the response variable 

and commonly the parameter of interest.  

Covariates can be fit to all estimated parameters in order to remove bias, improve 

model fit or better predict density within or beyond the study area. Covariates can also be 

fit to trap sites and individuals to accommodate heterogeneity in detection or space, or 
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among individuals, but there is a limit to the number and type of covariates that can be fit 

simultaneously (Efford 2018). We accommodated variation in sampling effort by coding 

the number of days each trap was set directly into the trap data. Detection success 

commonly increases from mid to late winter in wolverine (Broseth et al. 2010, Royle et 

al. 2011,) and so we allowed the detection parameter to vary among trapping sessions, 

expecting increased detection in latter sessions. We expected female ranges to be smaller 

than males, but we did not run separate analyses for each sex to estimate density because 

we had small sample sizes, and smaller range size is often compensated for by higher 

detection success (Efford and Mowat 2014). In this case combined models often yield 

nearly identical density estimates to separate models for each sex. 

Our hair traps were far apart and included a substantive meat reward. Many 

individuals had few traps in their home range and were more likely to pass by a site they 

had already visited than a different site, especially given the food reward. Hence, we 

expected repeated detections of an individual wolverine would be more likely at sites 

they were detected at previously, and we allowed for this explicitly in our model 

structure. This trap-based behavior response has been detected in wolverine (Mulders at 

al. 2007, Royle et al. 2011) and many other carnivore species where baited sites were 

used.  

Additionally, we hypothesized that wolverine winter movements may be 

influenced by current snow cover, which varied considerably among years during our 

study. We measured snow depth on the final visit to each detection site and entered this 

as a trap covariate for detection on the idea that current snow conditions may influence 

movement and hence detection. We tested to see if the difference in baits used in the East 
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and West Kootenay measurably influenced detection success. In addition, we included a 

parameter (DNA) that allowed for different detection success based on which lab 

originally analyzed the genetic data. 

We calculated mean annual home range sizes for all wolverine studies done in the 

montane region of western North America. Where possible we chose extensive estimates 

such as 95% minimum convex polygon estimates and did not use core estimates. We 

weighted the mean from each study by the sample size of individual animals and used 

this mean to calculate a priori sigma values, which is the spatial parameter that scales for 

density in secr models. Sigma can be calculated as sigma = r/2.45 where r is the radius of 

the 95% home range (Sun et al. 2014). We compared these independently calculated 

spatial values to those estimated by secr analysis of our detection data. 

Wolverine density is affected by human-caused mortality, principally trapping in 

BC and Alberta (Krebs et al. 2004). We tested for this effect within our study areas by 

coding all pixels in each trapline with the number of wolverine killed the winter we 

worked. Trapping kills were assigned to a trapline because exact mortality locations were 

rarely collected. By assigning the number of trapped wolverine to a trapline, we had a 

spatial depiction of recent trapping mortality that could be incorporated into the secr 

analysis as a spatial mask. We corrected for the variation in trapline sizes by dividing the 

number of wolverine killed by area of the trapline.  

We hypothesized that wolverine density would be higher in higher elevation 

ecosystems. Wolverines appear to use higher elevations at all times of year and especially 

in winter (Krebs et al. 2007, Inman et al. 2012b). We assumed that wolverine were not 

choosing elevation itself but preferred plant associations and climate envelopes typical of 
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higher elevation or latitudes (Copeland et al. 2010). Additionally, females are known to 

den at higher elevations in montane areas (Krebs et al. 2007). We used ecological 

mapping (MacKillop and Ehman 2016) to divide each study area into three broad zonal 

ecosystems:  

i) Low elevation forests which were wetter in our western study areas than 

our eastern study areas.  

ii) Subalpine forest of Englemann spruce-subalpine fir (ESSF) typical of 

upper elevations in North American montane forests.  

iii) Alpine, which included all high elevation communities such as alpine 

tundra and grassland, parkland and woodland forests and rock.  

Because precipitation increases with elevation, both the latter ecosystems were wetter, 

snow affected ecosystems. Permanent ice was excluded. Alpine and ESSF were included 

as masks to test the idea that habitat type was related to density while low elevation forest 

was excluded to contrast the other two habitats. 

Snow cover varied considerably across our study area. We calculated the average 

spring snow cover for each year from 2000-2016 using MODIS data (after Copeland et 

al. 2010) and included the score for the presence of snow (0-17) in our secr analysis as a 

mask to test the relationship between spring snow cover and local wolverine density. 

We calculated road density using up to date road data acquired from both 

provincial governments. We used open source data for roads in the USA. We also 

acquired Human Influence Index mapping as an alternative and more generalized 

measure of disturbance (http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-

influence-index-geographic). 
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The spatial data for all variables were re-scaled using a moving window analysis 

with a radius of 10 km, which is roughly the radius of a female home range. We did this 

because secr uses the habitat value at the putative home range center, but we felt 

wolverine density would be more strongly related to the amount of each spatial variable 

in the entire home range and not at a specific site. 

4.3.2 Population model 

We built an annual discrete-time population model to better understand 

sustainable harvest rates of wolverine. A number of previous efforts have used population 

modelling to examine the sustainability of harvest (Krebs et al. 2004, Lofroth and Ott 

2007, Squires et al. 2007, Dalerum et al. 2007) or population viability (Saether et al. 

2005). In particular, we wanted to understand how sex and age-biased harvest affected 

harvest sustainability, and how environmental stochasticity and density dependence 

might further influence harvest rates. We used field data from radiotelemetry studies to 

parameterize reproduction and survival and we used carcass studies to estimate potential 

reproduction based on in-utero measures of pregnancy rate and the proportions of each 

age and sex cohort in the trapped sample. Vulnerabilities to harvest of each sex and age 

class were estimated by solving the system of equations that aligned the model output 

with the sex and age structure of observed harvested samples. We added environmental 

stochasticity to the reproduction component of the model because successful reproduction 

appears to be closely linked to late winter food abundance, which can be as random an 

event as the discovery of a single ungulate carcass by an individual female (Mattisson et 

al. 2016). For each reproductive parameter, a beta distribution was used to generate 
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random realizations that fell within a set expected value (tol) of the parameter 

approximately 95% of the time. 

Our model was structured into 5 cohorts: juveniles, yearling females and males, 

and adult females and males. Annual survival was split into an initial pre-harvest rate and 

a second post-harvest rate that modestly reduced the initial rate as a function of harvest 

rate. Density dependence was incorporated into reproduction using a theta power 

function. Only one study has estimated theta for wolverine (Saether et al. 2005) and it 

found evidence for very strong density-dependence near carrying capacity (K; theta = 

12.5). We set K at roughly 50% higher than our observed population estimate because 

much of the study area appeared to be unoccupied though this was often the poorer 

habitat. Density-dependence was trivial when K was 50% higher than the starting 

population size. We used survival rates from Krebs et al. (2004) for yearlings and adults 

and juvenile survival as measured by Persson et al. (2006). We used the mean 

reproduction observed by 3 field studies (Magoun 1985, Copeland 1996, and Persson et 

al. 2006). This value (0.77 young/year/female) was for adult females only as yearling 

females have not been observed to reproduce. The sex ratio of litters at birth was assumed 

to be equal. Age ratios of trapper killed carcasses were 36% juveniles, 20.2% yearling 

males, 12.6% yearling females, 20.4% adult males, and 10.8% adult females and were 

derived by taking the mean ratio from five mid to long-term carcass collection studies 

from northern Canada (Banci and Harestad 1988, Mulders 2000, Awan and Szor 2012, 

Lee 2016 and Kukka et al. 2017). We first ran a model to solve for harvest vulnerabilities 

which were then used as parameters in the subsequent population modelling process. We 

ran the model for 60 years and focused attention on its long-term steady state behaviour. 
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Initial cohort sizes were based on observed age and sex ratios, which totaled to our 

estimate of the population size for the study area. It took about 10 years for the age 

structure to stabilize for each new model run. All data and models were built in R (R 

Core Team 2016).  

4.4 Results 

4.4.1 Density and harvest rate 

We sampled wolverine during 6 winters between December 2010 and April 2016 

throughout southeast BC and southwest Alberta (Figure 4). We identified 126 individual 

wolverine that were detected 326 different times across years, study areas, trapping 

occasions and sites (Table 6). Only the two study areas in the national parks were 

sampled more than one year and these study areas generated much of the recapture data 

in the dataset (Table 6). 

We found that wolverine were more commonly detected at traps where they had 

previously been detected, which is expected when food rewards are provided at trap sites. 

We also expected detection success to increase as the winter progressed, but variation 

among capture occasions was not supported (Table 7). The best fitting detection model 

included separate detection parameters for each sampling area and year, but this model 

had 19 parameters and was unstable. This model was unrealistic given the small sample 

sizes in some studies (Table 6) and we did not consider it further. The binary variables 

representing the two genetic labs, snow depth at the trap site, and bait type were all 

weakly related to detection probability, so we did not include these variables in further 

analyses. Trap-effort and trap-specific behavior were included in all future model fitting 

to account for the variation in detection probability among traps and individuals. 



47 

 

 
Table 6. Wolverine sampling effort and detection success in southeast British Columbia and 

southwest Alberta, 2011-2016. Year is the year at the end of the sampling winter and the area 

sampled is the mask area for each study area (Fig. 4). BYK_NP stands for Banff, Kootenay and 

Yoho National Parks. MRG_NP stands for Mount Revelstoke and Glacier National Parks. There 

were 153 individuals among the sampling areas and years which equaled 126 individuals because 

some animals were detected in multiple sampling areas or years. 

Study 

Area 

Year Area 

sampled 

(km2) 

Sites 

sampled 

Detection 

occasions 

Individuals 

detected 

 

Detections 

(spatial 

detections) 

Mean 

trap 

spacing 

(km) 

Rocky Mountains      

BYK_NP 2011 19,617 48 3 23 46 (46) 8.5 

BYK_NP 2012 19,617 10 3 8 14 (14) 12.9 

BYK_NP 2013 19,617 64 3 26 62 (63) 7.6 

Waterton-

Westcastle 

2014 7347 20 3 1 1 (1) 9.3 

Central 

Rockies 

2015 18,785 78 3 11 21 (28) 8.7 

South 

Rockies 

2016 18,714 75 3 11 22 (37) 7.1 

Purcell Mountains      

South 

Purcells 

2013 10,833 66 2 8 9 (12) 7.0 

Central 

Purcells 

2016 7910 43 2 8 11 (23) 7.1 

Selkirk Mountains      

MRG_NP 2011 7150 6 3 3 4 (4) 9.7 

MRG_NP 2012 7150 7 3 9 11 (11) 6.1 

MRG_NP 2014 7150 12 3 3 3 (6) 4.4 

MRG_NP 2015 7150 6 3 10 15 (20) 12.4 

MRG_NP 2016 7150 6 3 10 13 (13) 8.9 

South 

Selkirks 

2012 5452 23 2 4 5 (6) 7.8 

Central 

Selkirks 

2014 7863 63 2 16 22 (40) 7.0 

Valhalla 

ranges 

2015 4445 33 2 2 2 (2) 7.5 

Total   560  153 261 (326) 7.75 
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Table 7. Model selection table to evaluate possible variation in detection success for wolverine 

sampled in southeast British Columbia and southwest Alberta, 2011-2016. D = density, g0 = 

detection probability, sigma = movement parameter, bk = trap specific behavior, snowdepth = 

snow depth at trap site at last check, DNA = separate g0 for each genetic lab, Bait = separate g0 

for ungulate versus beaver bait, t= separate g0 for each trapping occasion. k = the number of 

model parameters, logLik = model log likelihood value, AICc = Akaike Information Criteria 

corrected for small sample size, ΔAICc = the difference in AICc values, weight = relative model 

weight based on ΔAICc values. 

model k logLik AICc ΔAICc weight 

D~1 g0~bk sigma~1 4 -1078.2 2164.676 0 0.2487 

D~1 g0~DNA + bk sigma~1 5 -1077.14 2164.695 0.019 0.2463 

D~1 g0~bk + snowdepth sigma~1 5 -1077.19 2164.797 0.121 0.2341 

D~1 g0~Bait + bk sigma~1 5 -1077.42 2165.24 0.564 0.1876 

D~1 g0~t + bk sigma~1 6 -1077.14 2166.861 2.185 0.0834 

D~1 g0~t sigma~1 5 -1101.78 2213.969 49.293 0 

D~1 g0~1 sigma~1 3 -1107.33 2220.828 56.152 0 

D~1 g0~snowdepth sigma~1 4 -1107.08 2222.43 57.754 0 

 

Detection probability was 0.006 (SE 0.001) for wolverines that were detected at a 

trap for the first time and 0.023 (SE 0.003) for individuals that had already been detected 

at the same trap. Previously detected animals had 4 times the chance of being detected 

again at the same trap, which is a very strong behavior response. Sigma, the spatial 

parameter, was 9.8 km (SE 0.54 km) for both sexes combined and 11.2 km (SE 0.95 km) 

for males and 8.4 km (SE 0.61 km) for females. Sigma values, as calculated from home 

range data for wolverines living in montane areas, varied from 4.4 km for adult females 

to 11.4 km for sub-adult males (Table 8). Sub-adults may make such large movements 

while exploring for a permanent home range that they may effectively emigrate from 

many study areas (Inman et al. 2012b). Our mean sigma value, which was pooled across 

age-classes, was closer to the size expected for males than females and the sex-based 

values were closer to those expected for sub-adults than adults (Table 8). 



49 

 

Table 8. Mean annual home range size for wolverine in the montane mountains of western North 

America (see SM for data). Sigma is the movement parameter estimated via secr and was 

calculated as sigma = r/2.45 where r is the radius of the 95% home range (Sun et al. 2014). 

Sex Age Mean home 

range size 

(km2) 

Home 

range 

radius 

sigma n 

Female Adult 339 10.4 4.2 28 

Female Sub-adult 787 15.8 6.5 22 

Male Adult 1097 18.7 7.6 25 

Male Sub-adult 2333 27.3 11.1 16 

 

After testing the influence of covariates on detection probability, we tested 

variables we hypothesized would be related to density. We did not compare spring snow 

with alpine or ESSF (high elevation forest) in the same model because these variables 

were strongly correlated. Spring snow and road density were most strongly related to 

estimated density (Table 9); all other variables generated only minor improvements in fit. 

Surprisingly the trapping mortality variable was not related to density (Table 9). Density 

varied from 0.9 to 4.4 wolverine/1000 km2 among our sampling areas and averaged 2.0 

(CI 1.70-2.47) across the study area. We also ran the top model separately for each sex, 

and summed male and female densities were nearly identical to the mean density as 

estimated by the model that did not accommodate sex. Females were 62% of the 

estimated population.  Density was positively related to the annual consistency presence 

of spring snow cover and negatively related to road density (Figure 5).  
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Table 9. A comparison of the fit of a selected group of models to estimate density of wolverine in 

southeast BC and southwest Alberta. All models include trap specific behavior (g0~bk) and no 

covariation for spatial parameter (sigma~1). Roadden = road density, Snow17 = the number of 

years with spring snow cover between 2000-2016, TrapHarvest = area weighted measure of the 

number wolverine killed in the trapping season previous to sampling, Alpine = the proportion of 

alpine habitat, ESSF = the proportion of upper elevation forest, Hii = human impact index which 

is a cumulative measure based on road density, human habitation and other human footprints. 

model k logLik AICc ΔAICc weight 

D~roadden + Snow17 6 -1037.6 2087.7 0.0 0.52 

D~roadden + Snow17 + TrapHarvest 7 -1037.4 2089.6 1.9 0.20 

D~Snow17 5 -1039.9 2090.2 2.5 0.15 

D~hii + Snow17 6 -1038.9 2090.4 2.7 0.13 

D~roadden + Alpine 6 -1042.5 2097.5 9.8 0.00 

D~roadden + ESSF + Alpine 7 -1042.3 2099.4 11.7 0.00 

D~roadden + ESSF + Alpine + 

TrapHarvest 

8 -1041.9 2100.8 13.1 0.00 

D~roadden 5 -1045.7 2101.7 14.0 0.00 

D~Alpine 5 -1048.2 2106.8 19.1 0.00 

D~hii 5 -1063.9 2138.3 50.5 0.00 

D~ESSF 5 -1076.4 2163.2 75.5 0.00 

D~1 (null) 4 -1078.2 2164.7 77.0 0.00 

D~TrapHarvest 5 -1077.8 2166.0 78.2 0.00 
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Figure 5. The relationship between spring snow cover, road density and wolverine density based 

on our best fit model (model 2 in Table 9). We built our spring snow map using 17 years of snow 

cover data following methods outlined in Copeland et al (2010). The upper figure is for the 

combined sex model and the lower figure is for separate sex models. 
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Our data are the first to observe a positive relationship between wolverine 

abundance and spring snow cover. This observation supports the earlier hypothesis that 

the distribution of wolverine relates to the probability that an area has complete snow 

cover during the late denning period. The slope of the relationship between spring snow 

and density was steeper for female than male wolverines (Figure 5), which suggests snow 

cover affected their habitat choice or survival more than males. 

We used this model to extrapolate wolverine density to our entire study area; 

estimated density generally declined from north to south (Figure 6). We derived 

population estimates for the Kootenay Region of BC, the Alberta portion of our greater 

study area, and for the two areas combined. The wolverine kill during the 6 years of our 

field sampling and the 3 years previous averaged 19 animals/year for the greater study, 

and 16.6 animals in the BC portion and 2.3 animals in the Alberta portion of our study 

area. Our estimate of the kill rate for the entire study area was 8.4%. The kill rate in BC 

was higher than the kill rate in Alberta (Figure 7) because much of the wolverine 

distribution in southern Alberta was in national parks (Figure 6). We also set road density 

to zero and predicted wolverine abundance without the depressing effect of the road 

covariate; abundance increased 44% from 226 (SE = 21.5) to 326 (SE = 66.2). 
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Figure 6. Wolverine density in southeast BC and southwest Alberta estimated from spatial 

capture-recapture analysis of genetically identified wolverine sampled during winter 2011-2016. 

There was no trapping in national parks but trapping was permitted in some provincial parks. 
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Figure 7. The harvest rate of wolverine based on population estimates extrapolated from spatial 

capture-recapture analysis of genetically identified wolverine sampled during winter 2011-2016 

in southeast BC and southwest Alberta, Canada. Horizontal error bars are 95% confidence 

intervals of population estimates. Vertical error bars are our best guess of the likely error in the 

recording of wolverine trapping kill. Pink shading denotes harvest above recommended levels, 

red shading denotes harvest rates that are likely not sustainable. 

4.4.2 Population modeling 

Our population model suggested maximum sustainable mortality rates were 

6.2%/year when harvest was drawn at random among sex and age classes. This result is 

similar to all other modelling efforts that also assumed a random harvest. We then used 

the mean age structure from published carcass studies to calculate harvest vulnerabilities 

by age and sex cohorts and found that young age classes were 6-10 times more 

vulnerable to harvest than adult females. When these vulnerabilities were incorporated in 
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our model, the average maximum sustainable harvest increased to 8.3%. Stochasticity in 

reproduction caused rapid declines in the sustainable harvest rate from 8.1% at tol = 0.05 

to 7.2% at tol = 0.1 to zero when tol was 0.4.  

The above models used reproduction and survival values measured in the field 

and maximum sustainable harvest was quite sensitive to variation in reproduction. When 

we varied adult reproduction from 0.6-1 young/female/year (yearling reproduction was 

zero), the maximum sustainable harvest rate varied from 5-12%.  

Potential reproduction in wolverine is much higher than what has been observed 

in the field post-partum because many more females are pregnant than give birth, 

including some yearlings. When we used in-utero pregnancy rates in our model the 

maximum harvest rate increased to between 18-23%. 

4.5 Discussion 

Wolverine trapping harvest is likely not sustainable in southeast BC and 

southwest Alberta, and the current level of mortality presents considerable conservation 

risk to this population. While the observed harvest rate equaled the theoretical maximum 

we calculated in our population modelling exercise, the study area includes many parks 

and protected areas, so the harvest rate in the portion of the study where trapping was 

allowed far exceeded sustainable levels. The uncertainty in the recording of the wolverine 

harvest largely leads to under-reporting which created a substantive portion of the 

conservation risk (Figure 7). Several other North American researchers have concluded 

that wolverine harvest in their study populations was not sustainable or was being 

sustained by immigration (Krebs et al. 2004, Squires et al. 2007, Dalerum et al. 2008). 



56 

 

So what is the sustainable harvest rate for wolverine in this area? Harvest rates 

can be considered the policy portion of the harvest regime because the selection of an 

allowable harvest rate involves both social and biological considerations (Mowat et al. 

2013). The scientific part of the regime is often described by data and we collected data 

on population size and used various sources of data to build our population model. The 

social component involves the trade-off between the value to society and the perceived 

risk to the population. Wolverine generate relatively little value to the trapping industry 

compared to other important furbearers like marten or lynx, but moderate value to the 

few trappers that catch them. About 15 trappers catch wolverine in our study area each 

year. Conservation risk from harvest is high because wolverine occur in a discontinuous 

fashion at low densities, have few young, and harvest sustainability was strongly affected 

by environmental stochasticity which could greatly affect reproduction (Persson 2005).  

Because of the low monetary value and high conservation risk we suggest that the target 

harvest rate should be conservative and less than half the theoretical maximum; we 

suggest a target harvest rate of <=4% of the population per year. 

Pregnancy rates and litter sizes observed before birth suggest a potential birth rate 

that is double that observed in the field. All field studies of wolverine reproduction 

suggest that females do not reproduce every year (Rauset et al. 2015).  The only 

observations of wild wolverine breeding every year were during an experimental study 

for a select few females fed all winter (Persson 2005). No field studies have recorded 

litter sizes above 3, which is commonly observed in-vitro. Many recent field studies were 

done on populations that were harvested, some heavily, and none of these studies 

suggested a density-dependent response in reproduction that approached levels seen in-
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vitro (Copeland 1996, Krebs et al. 2007). Potential reproduction in wolverine is much 

higher than observed in the wild. We conclude that any analysis of wolverine population 

dynamics should use reproductive rates measured in wild populations of wolverine, not 

those measured in-vitro.  

We found that sub-adult males and females were much more vulnerable to 

trapping (10x and 6x respectively) than adult females. Adult males were 3x more 

vulnerable than adult females to trapping. In a meta-analysis of survival of North 

American wolverine, Krebs et al. (2004) also found sub-adult males were most 

vulnerable to trapping. Our population model suggested that the maximum sustainable 

harvest rate increased by 2% due to the greater vulnerability of sub-adults. This resulted 

because adult females had lower mortality per capita and so reproduction did not decline 

with harvest rate as rapidly as with random mortality. Greater vulnerability of young 

animals to trapping moderates the conservation risk of trapping. 

Why was the spatial trapping mortality variable not negatively related to density if 

trapping was limiting wolverine abundance in our study area? This may be due to the fact 

that wolverine mortality can only happen in areas that support wolverine, and large 

portions of our study area appear to support few or no wolverines. This creates a positive 

relationship between density and trapping kill, at least at low to medium abundance. At 

higher abundance, this relationship may switch, resulting in a non-linear relationship. 

Also, resident wolverine that are killed may be quickly replaced by juveniles given the 

large effort juveniles put into searching for a territory after dispersing from their natal 

range (Inman et al. 2012b). In the Rocky Mountain National Parks, in the northeast 

corner of our study area, density increased with distance from the park boundary 
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suggesting trapping outside the parks reduced density measurably (Barrueto et al. 

submitted).  

Population density averaged two wolverine/1000 km2 across the study area. 

Previous density estimates in the montane mountains of western North America were 

mostly higher than our estimate (range 4-15.4 wolverine/1000 km2; Table 10). This 

difference could be explained by the very high mortality rate observed in our study area. 

However, none of these earlier studies corrected for closure bias, which could lead to 

large over-estimates for an animal like wolverine that have large home ranges and who 

disperse during the period of study. Wolverine densities appear similar in montane and 

boreal forests although none of the boreal estimates were corrected for closure either 

(Table 10), so it is possible wolverine density in boreal environments is actually lower 

than in montane environments. Higher densities have been recorded in coastal Alaska and 

in several places in the arctic; however again, the highest observed densities were not 

corrected for closure. In one comparative study closure bias was 2.5 fold greater than the 

closure corrected density. Efford and Boulanger (2018) estimated wolverine density 

using the same data as Mulders et al. (2007), but they corrected for closure bias explicitly 

using spatial capture-recapture methods. Their estimate was 6.7 (CI 5.4-8.3), compared to 

17.2 (CI 16.4-24.3) from the earlier work. It would appear imperative to correct for 

closure bias in all wolverine inventories given the possibility for large biases, especially 

if the inventory area is relatively small. In summary, the highest reliable wolverine 

densities (about 10 wolverine/1000 km2) were observed in coastal Alaska and the Yukon 

north slope, with moderate densities observed in the central arctic when caribou were 
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abundant (Table 10). Our work suggests that densities in montane environments are low 

compared to environments further north.  

Table 10. Wolverine densities from selected studies in North American. Confidence Intervals 

assume α=0.05unless stated. Study area size was taken from each publication and in some cases 

was the area trapped and in other cases included a buffer around the traps to account for the 

detection of animals living across the study area boundary. 

Density 

(animals/100

0 km2) 

Precisio

n (95 % 

CI) 

Study 

Area 

Size 

(km2) 

Location Methods Closure 

correctio

n 

Authors 

Coastal rainforest      

9.7 5.9-15 2140 Alaska 

Panhandle 

Camera 

trapping at 

baited sites 

yes Royle et 

al. 2011 

3.0 2.6-3.4 

(80% 

CI) 

4340 Coastal 

Alaska 

Aerial track 

counts & 

probability 

estimator 

yes Golden et 

al. 2007 

Montane forest      

15.4  1300 Northwest 

Montana 

live-capture/ 

radiotelemetr

y & track 

counts 

no Hornocke

r and 

Hash 

1981 

4-11.1  8000 Northern 

Idaho 

as above no Copeland 

(1995) 

5.8  4000 SE British 

Columbia 

live 

capture/photo 

traplines 

no Lofroth 

and Krebs 

2007 

3.5 2.8-9.6 4381 Yellowstone

-southwest 

Montana 

Live capture 

& genetic 

sampling 

no Inman et 

al. 2012b 

1.8 & 3.0  2260 & 

2334 

Westcentral 

Alberta 

DNA hair 

capture & 

mark-

recapture 

partial Fisher et 

al. 2013 

6.8  4140 Willmore-

westcentral 

Alberta 

DNA hair 

capture & 

mark-

recapture 

partial Fisher et 

al. 2013 
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Density 

(animals/100

0 km2) 

Precisio

n (95 % 

CI) 

Study 

Area 

Size 

(km2) 

Location Methods Closure 

correctio

n 

Authors 

3.1 2.3-4.2 9000 Rocky 

Mountain 

National 

Parks 

DNA hair 

capture & 

mark-

recapture 

yes Barrueto 

et al. 

submitted 

0.9-4.4 

�̅�=2.0 

1.70-

2.47 

110,700 Southeast 

BC-

southwest 

Alberta 

DNA hair 

capture & 

mark-

recapture 

yes This study 

Boreal sub-boreal forest      

4.8  51,200 Northeast 

BC 

snow tracking 

and harvests 

no Quick 

1953 

5.2  4.2-6.2 1870 Central 

Alaska 

tracking and 

probability 

estimator 

no Becker 

1991 

10.8  1800 Southern 

Yukon 

live-capture 

and telemetry 

assuming 

exclusive 

home ranges 

no Banci and 

Harestad 

1990 

6.4  8900 NE British 

Columbia 

live 

capture/photo 

traplines 

no Lofroth 

and Krebs 

2007 

6.6 5.5-7.7 13,500 Southern 

Norway 

DNA hair 

capture & 

mark-

recapture 

no Flagstad 

et al. 2004 

2.8-3.6  ≈13,000 Central 

Norway 

Extrapolation

s from den 

surveys 

no Landa et 

al. (1998) 

Arctic  plains      

20.8  2400 Alaska-

foothills 

as above no Magoun 

1985 

7.2  ≈ 5000 Alaska-

foothills and 

coastal plain 

as above no Magoun 

1985 

9.7 9.1-10.3 

(80% 

CI) 

3375 Northern 

Yukon 

Aerial track 

counts & 

probability 

estimator 

yes Golden et 

al. 2007 
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Density 

(animals/100

0 km2) 

Precisio

n (95 % 

CI) 

Study 

Area 

Size 

(km2) 

Location Methods Closure 

correctio

n 

Authors 

17.2 16.4-

24.3 

2556 Daring 

Lake-

Central 

arctic 

DNA hair 

capture & 

mark-

recapture 

partly Mulders 

et al. 2007 

2-7 over 

multiple 

years 

2000-

3000 

multiple 

areas-

Central 

arctic 

DNA hair 

capture & 

mark-

recapture 

yes Efford 

and 

Boulange

r 2018 

4.8 3.22-

6.38 

unknow

n 

Izok-Central 

Arctic 

DNA hair 

capture & 

mark-

recapture 

yes EDI & 

AWR 

2013 

6.9 5.85-

7.95 

unknow

n 

High lake-

Central 

Arctic 

DNA hair 

capture & 

mark-

recapture 

yes EDI & 

AWR 

2013 

2.4 2.09-

3.33 

3344 Aberdeen 

Lake-

Eastern 

Arctic 

DNA hair 

capture & 

mark-

recapture 

yes Awan and 

Boulange

r 2016 

       

3.3-4.4 2.89-

5.93 

4550 Henik Lake-

Eastern 

Arctic 

DNA hair 

capture & 

mark-

recapture 

yes Awan et 

al. 2018 

 

We suggest that most, if not all, previous studies that did not use spatial capture-

recapture methods to analyze their sampling data have substantively over-estimated 

wolverine abundance. All studies that presented densities >10 wolverine/1000 km2 had 

study areas <3000 km2 (Table 10). For example, Lofroth and Ott (2007) used density 

estimates from two study areas in BC and extrapolated a population estimate for all of 

BC. They predicted the Kootenay region to have 324 wolverines, while our model 

predicted a population of 166. If this difference is a measure of bias in their population 
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estimates, then closure bias could lead to considerable under-estimates of the impact of 

trapping mortality throughout the wolverine range. 

We found that continuous spring snow cover strongly correlated with density at 

the scale of our analysis. The circumpolar distribution of wolverine and the known den 

sites were also related to spring snow in a multi-continent scale analysis (Copeland et al. 

2010). Other studies have examined the relationship between spring snow and habitat 

selection and most find some positive relationship (Copeland et al. 2010, Heim et al. 

2017, Kortello et al. In Prep.), and these relationships appear to be stronger in more 

topographically complex environments (see Webb et al. 2016 for example). Our results 

demonstrate that spring snow relates to density in montane environments, which suggests 

a functional relationship with wolverine ecology. 

Several reasons have been posited for this relationship including:  

i) A preference for snowier areas because wolverine are physically adapted 

to these environments (Copeland et al. 2010).  

ii) The need or preference for snow to cover dens for thermoneutrality of 

young (Copeland et al. 2010).  

iii) The need for snow to preserve cached meat (Inman et al. 2012a).  

We cannot unequivocally test among these hypotheses with our data, but we did run our 

best-fit density model for each sex separately. Females selected for snow more strongly 

than males (Figure 5), which supports the denning hypothesis more than the two 

alternatives. However, this is a weak test among these hypotheses because the stronger 

selection for snow by females could simply be due to the smaller ranges of female 

wolverine, which allows them to locate their ranges in relatively better habitat. Clarifying 
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the functional relationship between wolverine ecology and spring snow will require 

detailed study of their autecology.   

Wolverine density was negatively related to roads and the functional nature of this 

relationship is perhaps even less well understood than spring snow. Other works have 

reported similar relationships for wolverine (Krebs et al. 2007, Fisher et al. 2013), 

including an occupancy-based analysis of our West Kootenay data (Kortello et al. In 

Press). The simplest explanation for this result is the tendency for wolverine to select 

high elevation habitats, which are mostly found above the road network (Inman et al. 

2012b, Kortello et al. In press). However, trappers use roads to access their trapping areas 

so this relationship may be partly explained by the recent or historical effects of trapping. 

Only about 70% of the traplines in the Kootenay are trapped in any year (Aaron Reid, 

pers. comm.) and many fewer trappers try to catch wolverine, though some wolverine are 

caught as by-catch in traps set for other species. Further, only a small fraction of roads 

are travelled by trappers during winter so it seems likely that there are other negative 

effects of roads on wolverine density. Given other cases of human-caused mortality are 

rare, either food is less abundant near roads or, wolverine are avoiding roads to the point 

it influences density. Helicopter and backcountry skiing was negatively related to winter 

habitat selection in the north part of our study area (Krebs et al. 2007). In addition, 

female wolverines are known to abandon dens following human disturbance (Pulliainen 

1968, Magoun and Copeland 1998) and choose not to place den sites near human 

infrastructure (May et al. 2012). These observations suggest disturbance can influence 

habitat use and perhaps density. Forestry roads are also travelled on snowmobile by 

recreationists and used during winter logging operations and perhaps wolverine avoid 
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these collective uses. The human influence variable measures human habitation, which is  

correlated with front-country all surface roads. The lack of fit of this variable compared 

to the strong fit when forestry roads were included suggests it is the back-country forestry 

roads that wolverine are most strongly avoiding. It is also possible, though perhaps least 

likely, that the impact of ungulate hunting near roads reduces large prey numbers or 

promotes increased body condition in the surviving animals, such that fewer individuals 

die of poor body condition so less winter food is created for wolverine (Mattisson et al. 

2016). Efford and Boulanger (2018) documented a decline in wolverine numbers 

consistent with a decline in caribou numbers in the central arctic of Canada suggesting 

wolverine numbers link to ungulate numbers in at least part of their range. We conclude 

that the functional significance of the relationship between roads and wolverine density is 

unclear and requires further study. 

Juvenile wolverine begin to disperse in late winter which presents a potential 

positive bias to density estimates, because recapture rates would be negatively biased if 

juveniles move out of a study area entirely. This is possible given the large movements 

that have been documented (Inman et al. 2012b). It is also possible that spatial models 

may largely correct for this bias and we note that the estimate of the spatial parameter in 

this study was higher than expected based on the estimate of home range size. 

4.6 Management Implications 

Based on our work we suggest wolverine trapping mortality should be reduced by 

at least half in our greater study, and perhaps more than that for an interim period of 

recovery. Negative human impacts to wolverine density could be mitigated by reducing 

road density but the uncertainty of the mechanism behind this relationship makes it 
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difficult to identify the best areas to implement closures or traffic restrictions. Many 

forest roads have little traffic in winter in BC, especially at higher elevation. Most winter 

traffic is by snow machines for recreation and to a lesser extent industry. Given the strong 

relationship we observed between wolverine density and spring snow, it may be best to 

select areas with consistent spring snow cover and roads with substantive winter use 

when planning access mitigation for wolverine conservation. Denning females are most 

vulnerable to disturbance and of greatest population importance, so further research to 

identify denning habitat would offer more area specific access recommendations and 

provide the greatest benefit to wolverines. 
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CHAPTER 5.0  ASSESS WOLVERINE GENE FLOW AND FINE-SCALE GENETIC 

STRUCTURE 

5.1 Introduction 

Wolverines are a rare-occurring species that move over vast areas and without 

recognizing political boundaries. They inhabit extreme alpine and subalpine environments and 

their populations have experienced considerable range reduction over the last 50 years (Laliberte 

and Ripple 2004, Brodie and Post 2010). Loss of habitat and barriers to movement, along with 

continuing warming climate, are threats that further diminish and fragment the critical 

landscapes they need for dispersal within their metapopulation (McKelvey et al. 2011, Inman et 

al. 2013). 

Canada lists the wolverine as a species of Special Concern, while in Alberta lists it as 

Data Deficient (Alberta Fish and Wildlife 2008). Recently, in the United States the wolverine 

was a candidate species for federally listing as threatened under the Endangered Species Act (US 

Fish and Wildlife Service 2013). Wolverines used to be distributed across Alberta’s Rocky 

Mountains, adjacent foothills, and boreal forests (Petersen 1997; Poole and Mowat 2001); 

however, their current distribution is poorly known and the landscape they occupy is increasingly 

fragmented.  

In the Canadian Rocky Mountains, little is known about wolverines (Fisher et al. 2009). 

Despite ongoing trapping and development, land managers in British Columbia and Alberta have 

expressed concern about the species’ current management and conservation. In both provinces, 

wolverines are under intense pressure from recreational activities, transportation, and oil and gas 

development (Lofroth and Ott 2007, Miistakis Institute 2009, Fisher et al. 2013). 
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Wolverines are known to be sensitive to human disturbance, including transportation 

infrastructure. A localized study in the Kicking Horse Pass (Yoho National Park, B.C.) found 

that wolverines rarely crossed the Trans-Canada Highway (TCH), while other studies showed 

anecdotally they were averse to crossing even two-lane highways. To our knowledge, there is no 

information regarding how wolverines respond to major transportation corridors, such as the US 

Interstate highway system or the east-west TCH corridor in southern Canada. Knowing how 

wolverine movements and their metapopulation are affected by high speed, high traffic highways 

will be critical for providing the necessary connectivity and designing effective metapopulation 

conservation strategies.  

Presently little is known about the status of wolverines in the national parks of the 

Canadian Rocky Mountains (Suitor 2005). Recent research in central Alberta suggests that 

national parks may be a source population for unprotected areas in British Columbia and Alberta 

(Fisher et al. 2013). Thus, monitoring populations of wide-ranging species, such as wolverine, 

has been identified as a critical management objective in Banff and Yoho National Parks (Parks 

Canada 1997, 2007). 

The current expansion (2 to 4 lanes) of the TCH in Banff National Park presents a unique 

opportunity to address one of the most important threats to wolverine conservation at a trans-

boundary metapopulation scale. As the TCH expansion moves up Banff’s Bow Valley towards 

the Continental Divide, the highway enters subalpine habitats of prime importance for 

wolverines. Our research will be particularly important for evaluating the impact of this major 

highway on the regional population of wolverines in one of the core-protected areas of the 

species range. 
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Our research is the first to systematically collect information on wolverine occurrence in 

the Canadian Rocky Mountains and examine whether transportation corridors affect movements 

and gene flow. Specifically, we are interested in examining how the TCH affects genetic 

structure in wolverines and evaluating whether wildlife fencing and crossing structures may be 

effective solutions for restoring connectivity to wolverine populations. 

5.2 Methods 

5.2.1 Study Area 

Our study area is located in the Canadian Rocky Mountains, encompasses approximately 

9000 km2 and includes parts of Banff, Yoho and Kootenay National Parks, Mt. Assiniboine 

Provincial Park, the Columbia Valley in British Columbia, and adjacent provincial lands in BC 

(hereafter referred to as the park complex). The Bow River Valley of Banff National Park (BNP) 

is situated within the front and main ranges of the Canadian Rocky Mountains. The topography 

is steep and mountainous with elevations from 1300-3400 m, and a valley floor width from 2-5 

km. The climate is continental and characterized by relatively long winters and short summers 

(Holland and Coen 1983). Vegetation in the park encompasses montane, subalpine and alpine 

ecoregions. Montane habitats are found in low elevation valley bottoms. 

The lower Bow Valley is a human-dominated landscape with the TCH, the Banff 

Townsite (10,000 residents), a golf course, three ski areas, Canadian Pacific Railway (CPR), and 

a secondary highway. Neighboring Yoho National Park (YNP) is situated on the west side of the 

Continental Divide and is characterized by steep rugged terrain with narrow valleys and 

continental climate consisting of short, cool summers and long winters with high snowfall. The 

Kicking Horse River is the main east-west aligned watershed in YNP, which parallels the TCH 
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and CPR mainline. Differing from the Bow Valley, the Kicking Horse Valley is sparsely 

populated, as Field (300 residents) is the only townsite within the national park. 

5.2.2 DNA Collection and Genetic Analysis 

For sampling purposes, our survey area was delineated by creating a 30-km buffer around 

the TCH from Castle Junction (BNP) to the west boundary of YNP. We surveyed wolverine 

occurrence using a systematic sampling design consistent with past wolverine research (Fisher et 

al. 2013), enabling eventual data pooling and large, landscape-scale analyses. The survey area 

was divided into 12-km x 12-km grid cells (Figure 8a). Hair traps and motion-detection cameras 

were used to sample wolverine occurrence (Fisher et al. 2013). 

One sampling location was located in each grid cell. However, to increase probability of 

detection and movements within the TCH corridor, an additional sampling site was placed in 

select grid cells that overlaid the TCH. Hair traps and cameras were checked during three, 30-

day sessions between January and April. Hair samples were stored at room temperature on silica 

desiccant and later analyzed at the USDA Forest Service Conservation Genetics Lab (Missoula, 

Montana). The lab uses protocols for DNA extraction and microsatellite analysis of samples 

(Schwartz et al. 2009). 
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Figure 8. Wolverine hair trap success in parks complex between 2011 and 2013; number of unique 

wolverines detected at each sampling site in parks complex between 2011 and 2013.  Locations of 229 

wolverine detections in parks complex between 2011 and 2013. 

5.2.3 Transportation Effects on Population Structure 

We assigned each wolverine to the north or south side of the TCH based on where they 

were detected in relation to the highway and then examined genetic structure using population-

based and individual-based analyses.  We first calculated the population-based metric for genetic 

differentiation, Fst, using Genalex (Peakall and Smouse 2006).   We used program Genetix 

(Belkhir 1999) to perform a factorial correspondence analysis (FCA) to visually examine our 

data for patterns of clustering related to the TCH.  We used three independent methods to 

identify individual wolverines that crossed the TCH.  We define migrants as any wolverine 

detected moving across the fracture zone using any one of three criteria (Proctor et al. 2012):  
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1) Wolverines detected on both sides of the highway using non-invasive genetic sampling 

(NGS) methods, hair traps or opportunistic faecal sample collections. 

2) Wolverines cross-assigned to population of origin using frequency-based assignment 

tests (Paetkau et al. 1995).  

3) Wolverines cross-assigned to population of origin using Bayesian clustering in 

program STRUCTURE (Pritchard et al. 2000). 

We examined isolation by distance patterns in wolverines using Mantel tests to calculate 

the individual pair-wise genetic distance, which is useful for examining isolation by distance in 

individuals (Smouse et al. 1986, Rousset et al. 1997). We determined wolverine locations from 

sampling points using GPS and recorded geographic locations in the UTM coordinate system.  

Some wolverines in the study were located more than once and their locations averaged to obtain 

a detection centre. 

We performed Mantel tests using Genalex (Peakall and Smouse 2006) and examined our 

data for a correlation between genetic and geographic distance. To evaluate whether the highway 

has an effect on gene flow and resulted in genetically isolating populations north and south of the 

highway (fine-scale genetic structuring), we used individual clustering methods to examine 

current population genetic structure and identify recent migrants (Pritchard et al. 2000). This 

method uses allele sharing to cluster individuals using no a priori assumptions about population 

origin. 

5.3 Results 

5.3.1 DNA Collection and Genetic Analysis 

Between February 2010 and May 2013, we collected 2563 hair samples, 20 scat samples, 

1 urine sample, and 1 vomit sample (Table 11). To operate within our budget constraints, we 
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sub-selected the best samples. We analyzed 793 of the 2586 samples collected (31%) and 314 of 

those 793 samples (40%) produced multi-locus genotypes (i.e. individual IDs). Across all 

methods and years, we detected 64 unique individuals (25 females, 39 males). By far, the 

majority of samples were collected from hair traps in years 1 and 3, the years of intensive 

sampling effort. Out of 75 hair trap locations sampled, 60 of them (80%) produced at least one 

individual ID (Figure 8b).  More than one individual wolverine was detected at 39 of 75 sites 

(52%), with Lower Baker Creek hair trap yielding the most individual IDs (3 females, 3 males) 

per sampling site (Figure 8b). 

 

Table 11. DNA sample collection and genotyping success for wolverine hair and scat* samples collected 

in parks complex with barbed wire hair traps and snow tracking. 

Sampling 

Period 

# samples 

collected 

# samples 

attempted 

# 

genotypes 

# 

individual

s 

# 

females 

# 

males 

Pilot Year 43 27 11 4 2 2 

Wtr 2010-2011 849 256 88 22 8 14 

Wtr 2011-2012 295 54 22 13 7 6 

Wtr 2012-2013 1176 365 132 33 12 21 

Peripherals 114 21 13 5 1 4 

Incidentals 94 70 48 23 6 17 

Hawk Cr 

Killsite 15 0 0 0 0 0 

       

TOTALS 2586 793 314 64 25 39 

 

5.3.2 Transportation Effects on Population Structure 

We examined wolverine population structure and fine-scale movements using 229 unique 

locations (74 female, 155 male) in space and time (Figure 8b). We detected males more 

frequently than females, averaging 3.97 locations per male and 2.96 locations per female. Male 

wolverines were detected throughout the sampling area, whereas female detections were more 
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concentrated towards the center of the mountain park complex .  Of the 64 wolverines, 32 were 

detected on the north side of the highway (13 females, 19 males) and 32 were detected on the 

south side of the highway (12 females, 20 males).      

The results of our Mantel tests (R2=0.12) indicated a weak correlation between 

geographic distance and genetic distance in our dataset.  We calculated Fst for the total 

population of 64 individuals (Fst=0.32) and for each sex separately (female Fst=0.70, male 

Fst=0.25).  Our FCA plot with all 64 individuals showed some genetic clustering, but not in 

relation to the highway (Figure 9). However, FCA plots broken out by sex revealed structuring 

of females (Figure 10), but not males in relation to the highway (Figure 11).  Interestingly, plots 

of the total population and males-only revealed that M036 had an unusual genotype within the 

dataset (Figure 9 and Figure 11).  

We detected 7 wolverines that crossed the TCH, including two females and five males 

with DNA detections that spanned the roadway.  Self-assignment probabilities (females=0.92, 

males=0.62) and population assignment graphs from sex-specific frequency-based assignment 

tests indicated clustering of females, in particular.  Two females and fifteen males were 

identified as cross-population migrants from frequency-based assignments tests.  Results from 

program STRUCTURE indicated that there were three populations of wolverines, with more 

structuring in males than females.  Surprisingly, a spatial examination of the population clusters 

from STRUCTURE did not suggest an effect of the TCH on genetic isolation.  When examining 

the individual spatial locations of population clusters, clustering appears related to the TCH for 

females, but unrelated to the TCH for males. 
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Figure 9. Individual detection centers of 64 wolverines (color-coded by haplotype) detected with 

noninvasive genetic sampling to examine the effect of the Trans-Canada Highway on fine-scale genetic 

differentiation in the parks complex between 2011 and 2013. 
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Figure 10. Individual detection centers of A) 25 female and B) 39 male wolverines color-coded by their 

assignment to one of three population clusters identified in program STRUCTURE to examine the effect 

of the Trans-Canada Highway on genetic differentiation in the parks complex between 2011 and 2013. 

Individuals with q-value<0.7, was not assigned to population cluster for this analysis. 
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Figure 11. Graphical plots showing Factorial Correspondence Analysis [A) 25 female and B) 39 male], 

Principle Coordinates Analysis [C) 25 female and D) 39 male] and Assignment Test [E) 25 female and F) 

39 male] wolverines detected to the north (red) or south (green) of the Trans-Canada Highway in the 

parks complex between 2011 and 2013.   

Mitochondrial DNA sequencing identified four different haplotypes within the population 

of 64 wolverines.  All of these mitochondrial haplotypes had been documented in past studies of 

populations to the north, south or west of our study area.  Three of the four haplotypes (Cegelski 

L, Wilson A, Wilson H) are common in both males and females and were previously identified 

within Alberta; however, one haplotype (Wilson I) was only identified in three different males 

and had never been documented in the Canadian Rocky Mountains before.  An examination of 

the individual spatial locations of haplotypes did not indicate an effect of the TCH on 

mitochondrial DNA haplotype diversity. 
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5.4 Discussion and Management Implications 

Wolverines are quickly becoming recognized as an important indicator of healthy 

northern montane ecosystems.  In the face of climate change, it is increasingly important to 

understand what landscape features influence population structure of snow-dependent species to 

optimize mitigation strategies to ensure their survival (McKelvey et al. 2011).  With little 

empirical evidence, the Mountain Parks are already considered havens for wolverine populations 

in the Central Canadian Rocky Mountains (Fisher et al. 2013) and now we have provided the 

first evidence-based insight into their abundance, relative density, and population structure in this 

ecologically important area.  Here, we present the first fine-scale examination of wolverine 

genetic structure and provide results that suggest transportation systems have limited female 

movements leading to sex-biased dispersal and gene flow. 

5.4.1 DNA Collection and Genetic Analysis 

We were successfully able to detect a large number of wolverines using our noninvasive 

genetic sampling methods.  Fortunately, we had reasonable sampling coverage on both sides of 

the TCH so we were able to get relatively equal samples sizes of males and females to the north 

and south of the highway.  Our high success at hair trap sites allowed us to obtain genetic 

information from an adequate sample size of wolverines to examine genetic structure.  

Interestingly, female detections were more concentrated towards the center of the mountain 

parks, whereas male detections were more dispersed (Figure 11).  However, the greater number 

of detections and more widespread distribution were not surprising considering the well-

documented mobility of the male wolverine.            
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5.4.2 Transportation Effects on Population Structure 

Our results show that many female and male wolverines call the parks complex home, 

but transportation infrastructure affects the two sexes differently.  We detected ample male 

movement across the TCH and lack of genetic differentiation to infer that the highway has not 

genetically isolated male wolverines.  Conversely, we found that females were structured by the 

TCH, although we also found direct evidence that at least two females made it safely across the 

highway, possibly at one of the wildlife crossing structures.  Restricted female movements and 

sex-biased population structure has been documented in other carnivore species (Proctor et al. 

2005) and this demographic fragmentation can reduce meta-population viability; however, 

wildlife crossing structures can help to restore demographic and genetic connectivity (Sawaya et 

al. 2013, 2014). Fortunately, evidence suggests that females may be starting to use wildlife 

crossings. For example, a female wolverine, F015, may have been the wolverine detected 

crossing northward at Castle Underpass on February 16, 2011 (Clevenger 2013) as she was 

detected just two days prior at a nearby hair trap south of the underpass. 

The results of the Mantel tests to look for isolation-by-distance patterns indicated a weak 

correlation between geographic distance and genetic distance in our dataset, suggesting that 

distance alone did not account for a high percentage of the genetic variation observed.  Results of 

examining genetic structure were congruent across population-based (i.e. Fst) and individual-

based analyses (FCA, assignment tests), which allows for more powerful inference that there was 

a difference in how the TCH affects males and females.  Surprisingly, a spatial examination of 

the population clusters from STRUCTURE did not suggest a strong effect of the TCH on genetic 

isolation, but it has been well documented that STRUCTURE has difficulty assigning population 

clusters when levels of genetic differentiation are low such as with our study.  The weight of 

evidence suggests that there is an effect of the highway and that it is greater for females than for 
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males, but individual-based methods are extremely sensitive, so the relative magnitude of the 

transportation effect is unknown. 

Using population-based and individual-based measures of genetic structure, we detected 

relatively strong genetic differentiation in female compared to male wolverines across the TCH.  

We had good sampling coverage and representation of individuals both north and south of the 

highway, though our samples sizes and methods may not have had adequate power to detect 

structure at such a fine spatial scale in a species with home ranges that can exceed the size of 

national parks.  Future analyses that involve a larger geographic extent and include more 

individuals from nearby regions (i.e. Kananaskis Country, Mount Revelstoke and Glacier 

National Parks) would allow more powerful inference about the effects of transportation systems 

and other anthropogenic activities on wolverine population structure and gene flow.   

To gain a better understanding of how to effectively mitigate the fragmentation effects of 

the TCH on female wolverines, Parks Canada should continue monitoring of wildlife crossing 

structures on the TCH, particularly the newly constructed crossings west of Castle Junction 

(BNP). This will be important given the current lack of information with respect to how 

wolverines respond to crossing structures. After 17 years of monitoring roughly two dozen 

crossing structures, only 10 wolverine crossings were detected (Clevenger 2013). Crossing 

structure monitoring should be conducted in conjunction with winter roadside surveys to inform 

regarding the number of highway crossings by wolverines not detected at crossing structures, 

breaches in fence and behavior from snow tracking in the highway corridor. Last, Parks Canada 

should consider following tracks in snow to collect hair from wolverines that use wildlife 

crossing structures to traverse the TCH so that sexes can be determined to help separately 

evaluate the effectiveness of different crossing structure types to determine the best designs for 
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increasing female movement.  In short, we detected healthy numbers of wolverines in the 

mountain parks, but we also found an effect of the highway on female genetic interchange, 

which may be a possible threat to the viability of wolverine populations, highlighting the urgent 

need to maintain demographic and genetic connectivity in the Rocky Mountains. 
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